Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(33): 39578-39593, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37558244

ABSTRACT

The A-site cation-ordered GdBa0.5Sr0.5Co2-xCuxO5+δ (GBSCC) double perovskites are evaluated regarding the development of high-performance oxygen electrodes for reversible solid oxide cells (rSOCs). The aims are to maximally decrease the content of toxic and expensive cobalt by substitution with copper while at the same time improving or maintaining the required thermomechanical and electrocatalytic properties. Studies reveal that compositions with 1 ≤ x ≤ 1.15 are particularly interesting. Their thermal and chemical expansions are decreased, and sufficient transport properties are observed. Complementary density functional theory calculations give deeper insight into oxygen defect formation in the considered materials. Chemical compatibility with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) and Ce0.9Gd0.1O2-δ (GDC) solid electrolytes is evaluated. It is documented that the GdBa0.5Sr0.5Co0.9Cu1.1O5+δ oxygen electrode enables obtaining very low electrode polarization resistance (Rp) values of 0.017 Ω cm2 at 850 °C as well as 0.111 Ω cm2 at 700 °C, which is lower in comparison to that of GdBa0.5Sr0.5CoCuO5+δ (respectively, 0.026 and 0.204 Ω cm2). Systematic distribution of relaxation times analyses allows studies of the electrocatalytic activity and distinguishing elementary steps of the electrochemical reaction at different temperatures. The rate-limiting process is found to be oxygen atom reduction, while the charge transfer at the electrode/electrolyte interface is significantly better with LSGM. The studies also allow elaborating on the catalytic role of the Ag current collector as compared with Pt. The electrodes manufactured using materials with x = 1 and 1.1 permit reaching high power outputs, exceeding 1240 mW cm-2 at 850 °C and 1060 mW cm-2 at 800 °C, for the LSGM-supported cells, which can also work in the electrolysis mode.

2.
Sci Rep ; 13(1): 10107, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344514

ABSTRACT

Formation of plasmonically active silver, copper and composite silver-copper nanostructures were studied in this paper. Metallic nanostructures were fabricated by thermal disintegration, so called dewetting, of the thin films in an argon atmosphere. The formation process of the nanostructures was in-situ observed by a novel method, based on resistance measurements. The influence of the material and thickness of the initial thin film on temperature of their disintegration was investigated. Electrical measurements were validated by scanning electron microscopy observations, while metallic the behavior of nanostructures was studied by XPS method. The formation of silver-copper nanocomposite structures was confirmed by UV-vis spectroscopy. Plasmon resonance with two characteristic peaks for nanocomposite structures was observed.

3.
Chemistry ; 27(17): 5393-5398, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33491808

ABSTRACT

Lanthanum orthoantimonate was synthesized using a solid-state synthesis method. To enhance the possible protonic conductivity, samples with the addition of 1 mol % Ca in La-site were also prepared. The structure was studied by the means of X-ray diffraction, which showed that both specimens were single phase. The materials crystallized in the space group P21 /n. Dilatometry revealed that the material expanded non-linearly with the temperature. The nature of this deviation is unknown; however, the calculated linear fraction thermal expansion coefficient was 9.56×10-6 K-1 . Electrical properties studies showed that the material is a proton conductor in oxidizing conditions, which was confirmed both by temperature studies in wet in dry air, but also by the H/D isotope exchange experiment. The conductivity was rather modest, peaking at the order of 10-6  S cm-1 at 800 °C, but this could be further improved by microstructure and doping optimization. This is the first time protonic conductivity in lanthanum orthoantimonates is reported.

4.
Dalton Trans ; 49(31): 10839-10850, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32705110

ABSTRACT

The defect fluorite yttrium niobate Y3NbO7 and pyrochlore yttrium titanate Y2Ti2O7 solid solutions have been synthesized via a solid state synthesis route. The resulting stoichiometry of the oxides is Y2+xTi2-2xNbxO7, where x = 0 to x = 1. All of the samples were single-phase; however, for those with a predominant fluorite phase, a small amount of additional pyrochlore phase was detected. The volume of the solid solution unit cells linearly increases with increase in yttrium niobate content. The water uptake increases with (x) and the protonic defect concentration reaches almost 4.5 × 10-3 mol mol-1 at 300 °C. The calculated enthalpy of formation from oxides suggests strong stability for all of the compositions, with the values of enthalpy ranging from -84.6 to -114.3 kJ mol-1. The total conductivity does not have a visible dependence on Y3NbO7 content. For each compound, the total conductivity is higher in wet air. Interestingly, for samples where x < 0.5, the ratio of conductivity in hydrogen to air increases with increasing temperature, while for x > 0.5, the trend is the opposite.

5.
Materials (Basel) ; 13(4)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098087

ABSTRACT

In this work, Fe-doped strontium titanate SrTi1-xFexO3-x/2-δ, for x = 0-1 (STFx), has been fabricated and studied. The structure and microstructure analysis showed that the Fe amount in SrTi1-xFexO3-x/2-δ has a great influence on the lattice parameter and microstructure, including the porosity and grain size. Oxygen nonstoichiometry studies performed by thermogravimetry at different atmospheres showed that the Fe-rich compositions (x > 0.3) exhibit higher oxygen vacancies concentration of the order of magnitude 1022-1023 cm-3. The proton uptake investigations have been done using thermogravimetry in wet conditions, and the results showed that the compositions with x < 0.5 exhibit hydrogenation redox reactions. Proton concentration at 400 °C depends on the Fe content and was estimated to be 1.0 × 10-2 mol/mol for SrTi0.9Fe0.1O2.95 and 1.8 × 10-5 mol/mol for SrTi0.5Fe0.5O2.75. Above 20 mol% of iron content, a significant drop of proton molar concentrations at 400 °C was observed. This is related to the stronger overlapping of Fe and O orbitals after reaching the percolation level of approximately 30 mol% of the iron in SrTi1-xFexO3-x/2-δ. The relation between the proton concentration and Fe dopant content has been discussed in relation to the B-site average electronegativity, oxygen nonstoichiometry, and electronic structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...