Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(12): e12234, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590519

ABSTRACT

Filariasis and virus diseases that are transmitted by Culex quinquefasciatus are still a global health problem. Control of mosquito vectors with synthetic insecticides causes resistance to these mosquitoes to insecticides so that detection of susceptibility of the mosquito larval stage to insecticides is important for evaluating mosquito control programs. The aim of this study was to evaluate the susceptibility of wild-caught Cx. quinquefasciatus larvae in Jakarta, Indonesia, following exposure to temephos, malathion, cypermethrin, and deltamethrin; this was done by examining the detoxifying enzyme activities and histological damage to the larval midgut. Cx. quinquefasciatus larvae were collected from five fields in Jakarta and exposed for 24 h to temephos (1.25, 6.25, 31.25, and 156.25 ppm), malathion (0.5 ppm), cypermethrin (0.25 ppm), and deltamethrin (0.35 ppm). The larvae were then examined for acetylcholinesterase (AChE), glutathione S-transferase (GST), and oxidase activities using biochemical methods. Histological damage to the larval midgut was examined using routine histopathological methods and transmission electron microscopy (TEM). After 24 h, temephos and deltamethrin led to 100% mortality in the Cx. quinquefasciatus larvae. Temephos and malathion significantly inhibited the activity of AChE, while cypermethrin and deltamethrin significantly inhibited oxidase activity. Histologically, all insecticides damaged the larval midgut, as indicated by irregularities in the epithelial cell (ECs), microvilli (Mv), food boluses (FBs), peritrophic membranes (PMs), and cracked epithelial layers (Ep). The TEM findings confirmed that temephos and cypermethrin damage to the midgut ECs included damage to the cell membrane, nucleus, nucleoli, mitochondria, and other cell organelles. Overall, Cx. quinquefasciatus larvae in Jakarta were completely susceptible to temephos and deltamethrin. Synthetic insecticides may kill Cx. quinquefasciatus larvae through their actions on the metabolic enzyme activities and histopathological midgut.

2.
Vet World ; 14(11): 3065-3075, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35017857

ABSTRACT

BACKGROUND AND AIM: Pediculus humanus capitis, the human head louse, remains a global health problem. This study evaluated the resistance of head lice to permethrin and 6-paradol mediated by in vitro detoxification enzyme activity experiments and to describe physical changes in the lice using scanning electron microscopy (SEM). MATERIALS AND METHODS: The adult stages of P. h. capitis were collected from patients exposed to 1% permethrin and three different concentrations of 6-paradol (0.00005%, 0.0001%, and 0.00015%) using a filter paper diffusion bioassay. Healthy P. h. capitis adults served as the control. The in vitro bioassays were conducted after 10, 20, 30, and 60 min of exposure. The activities of acetylcholinesterase (AChE), glutathione S-transferase (GST), and oxidase were analyzed. Physical changes in the lice were analyzed using SEM. RESULTS: Permethrin and 6-paradol exhibited low toxicity against the lice. At 60 min, 1% permethrin had killed 36.7% of the lice present, while 6-paradol had killed 66.7-86.7%. Permethrin induced significantly elevated AChE, GST, and oxidase activity; 6-paradol also caused significantly elevated AChE, GST, and oxidase activity. Permethrin did not cause any ultrastructural morphological changes on the lice, while 6-paradol severely damaged the head, thorax, respiratory spiracles, and abdomen of the dead lice. CONCLUSION: This in vitro experimental of P. h. capitis is the first study to report P. h. capitis in East Jakarta shows complete resistance to permethrin and 6-paradol, and to describe the associated increase in AChE, GST, and oxidase activity. It was observed that 6-paradol severely damaged the head, thorax, respiratory spiracles, and abdomen of the dead lice.

SELECTION OF CITATIONS
SEARCH DETAIL
...