Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 16(2): e13266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38653477

ABSTRACT

The Gram-positive bacteria Streptomyces davaonensis and Streptomyces cinnabarinus have been the only organisms known to produce roseoflavin, a riboflavin (vitamin B2) derived red antibiotic. Using a selective growth medium and a phenotypic screening, we were able to isolate a novel roseoflavin producer from a German soil sample. The isolation procedure was repeated twice, that is, the same strain could be isolated from the same location in Berlin 6 months and 12 months after its first isolation. Whole genome sequencing of the novel roseoflavin producer revealed an unusual chromosomal arrangement and the deposited genome sequence of the new isolate (G + C content of 71.47%) contains 897 genes per inverted terminal repeat, 6190 genes in the core and 107 genes located on an illegitimate terminal end. We identified the roseoflavin biosynthetic genes rosA, rosB and rosC and an unusually high number of riboflavin biosynthetic genes. Overexpression of rosA, rosB and rosC in Escherichia coli and enzyme assays confirmed their predicted functions in roseoflavin biosynthesis. A full taxonomic analysis revealed that the isolate represents a previously unknown Streptomyces species and we propose the name Streptomyces berlinensis sp. nov. for this roseoflavin producer.


Subject(s)
Phylogeny , Riboflavin , Riboflavin/analogs & derivatives , Soil Microbiology , Streptomyces , Streptomyces/genetics , Streptomyces/classification , Streptomyces/metabolism , Streptomyces/isolation & purification , Riboflavin/metabolism , Riboflavin/biosynthesis , Base Composition , Genome, Bacterial , Whole Genome Sequencing , Germany , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism
2.
Molecules ; 28(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630229

ABSTRACT

A wide range of bioactive compounds with potential medical applications are produced by members of the genus Streptomyces. A new actinomycete producer of the antibiotic γ-rubromycin, designated TA 36, was isolated from an alpine soil sample collected in Peru (Machu Picchu). Morphological, physiological and biochemical characteristics of the strain, together with data obtained via phylogenetic analysis and MALDI-TOF MS, were used for the correct identification of the isolate. The isolate TA 36 showed morphological characteristics that were consistent with its classification within the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences showed that the TA 36 strain was most similar to S. iakyrus and S. violaceochromogenes with 99% similarity. Phylogenetic analysis together with the profile of whole cell proteins indicated that the strain tested could be identified as S. iakyrus TA 36. The crude extract Ext.5333.TA 36 showed various effects against the tested organisms with strong antimicrobial activity in the growth of Staphylococcus aureus (Newman) (MIC value of 0.00195 µg/µL). HPLC fractionation and LC/MS analysis of the crude extract led to the identification of the quinone antibiotic γ-rubromycin, a promising antitumour and antibacterial antibiotic. To the best of our knowledge, there is currently no report on the production of γ-rubromycin by S. iakyrus. Therefore, this study suggests S. iakyrus TA 36 as the first-reported source of this unique bioactive secondary metabolite.


Subject(s)
Quinones , Streptomyces , Phylogeny , RNA, Ribosomal, 16S/genetics , Quinones/pharmacology , Anti-Bacterial Agents/pharmacology
4.
Microb Biotechnol ; 16(5): 1054-1068, 2023 05.
Article in English | MEDLINE | ID: mdl-36998231

ABSTRACT

A better understanding of the genetic regulation of the biosynthesis of microbial compounds could accelerate the discovery of new biologically active molecules and facilitate their production. To this end, we have investigated the time course of genome-wide transcription in the myxobacterium Sorangium sp. So ce836 in relation to its production of natural compounds. Time-resolved RNA sequencing revealed that core biosynthesis genes from 48 biosynthetic gene clusters (BGCs; 92% of all BGCs encoded in the genome) were actively transcribed at specific time points in a batch culture. The majority (80%) of polyketide synthase and non-ribosomal peptide synthetase genes displayed distinct peaks of transcription during exponential bacterial growth. Strikingly, these bursts in BGC transcriptional activity were associated with surges in the net production rates of known natural compounds, indicating that their biosynthesis was critically regulated at the transcriptional level. In contrast, BGC read counts from single time points had limited predictive value about biosynthetic activity, since transcription levels varied >100-fold among BGCs with detected natural products. Taken together, our time-course data provide unique insights into the dynamics of natural compound biosynthesis and its regulation in a wild-type myxobacterium, challenging the commonly cited notion of preferential BGC expression under nutrient-limited conditions. The close association observed between BGC transcription and compound production warrants additional efforts to develop genetic engineering tools for boosting compound yields from myxobacterial producer strains.


Subject(s)
Myxococcales , Sorangium , Sorangium/genetics , Polyketide Synthases/genetics , Multigene Family , Myxococcales/genetics
5.
Angew Chem Int Ed Engl ; 62(6): e202214595, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36422061

ABSTRACT

A new family of highly unusual sesquarterpenoids (persicamidines A-E) exhibiting significant antiviral activity was isolated from a newly discovered actinobacterial strain, Kibdelosporangium persicum sp. nov., collected from a hot desert in Iran. Extensive NMR analysis unraveled a hexacyclic terpenoid molecule with a modified sugar moiety on one side and a highly unusual isourea moiety fused to the terpenoid structure. The structures of the five analogues differed only in the aminoalkyl side chain attached to the isourea moiety. Persicamidines A-E showed potent activity against hCoV-229E and SARS-CoV-2 viruses in the nanomolar range together with very good selectivity indices, making persicamidines promising as starting points for drug development.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Antiviral Agents/chemistry , SARS-CoV-2 , Plant Extracts
6.
Curr Microbiol ; 80(1): 46, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36538090

ABSTRACT

Mangroves are unique intertidal ecosystems that provide ecological niches to different microbes, which play various roles in nutrient recycling and diverse environmental activities. The association between myxobacteria and mangroves are hitherto poorly understood. The aim of our study was to evaluate the myxobacterial community composition as well as isolate myxobacteria and to characterize the antimicrobial activity of myxobacteria isolates from Indonesian mangroves. Twenty-five cultivable myxobacteria were affiliated in six genera: Myxococcus, Corallococcus, Archangium, Chondromyces, Racemicystis and Nannocystis of the order Myxococcales based on partial 16S rRNA gene sequences. Thirteen crude extracts showed moderate activities against at least one of human pathogenic microorganisms. The crude extract of Racemicystis sp. strain 503MSO indicated a novel compound, which has not been reported in the database yet and the identification of this compound needs further study. The myxobacterial communities of three different sampling sites were analyzed using primers adapted for the myxobacteria group identification. The results showed that myxobacterial communities are more diverse than assumed. Therefore, our study has highlighted the importance of the mangrove habitat as promising harbor of myxobacteria as well as novel antimicrobial compounds with activity against pathogenic microorganisms.


Subject(s)
Anti-Infective Agents , Myxococcales , Humans , Myxococcales/genetics , Ecosystem , Soil Microbiology , Indonesia , RNA, Ribosomal, 16S/genetics , Phylogeny
7.
Angew Chem Int Ed Engl ; 61(51): e202210747, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36197755

ABSTRACT

Herein, we describe the myxobacterial natural product Corramycin isolated from Corallococcus coralloides. The linear peptide structure contains an unprecedented (2R,3S)-γ-N-methyl-ß-hydroxy-histidine moiety. Corramycin exhibits anti-Gram-negative activity against Escherichia coli (E. coli) and is taken up via two transporter systems, SbmA and YejABEF. Furthermore, the Corramycin biosynthetic gene cluster (BGC) was identified and a biosynthesis model was proposed involving a 12-modular non-ribosomal peptide synthetase/polyketide synthase. Bioinformatic analysis of the BGC combined with the development of a total synthesis route allowed for the elucidation of the molecule's absolute configuration. Importantly, intravenous administration of 20 mg kg-1 of Corramycin in an E. coli mouse infection model resulted in 100 % survival of animals without toxic side effects. Corramycin is thus a promising starting point to develop a potent antibacterial drug against hospital-acquired infections.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Mice , Animals , Anti-Bacterial Agents/chemistry , Polyketide Synthases , Multigene Family
8.
Curr Microbiol ; 79(9): 284, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35947206

ABSTRACT

Exploration of secondary metabolites secreted by new Actinobacteria taxa isolated from unexplored areas, can increase the possibility to obtain new compounds which can be developed into new drugs for the treatment of serious diseases such as hepatitis C. In this context, one actinobacterial strain, CG3, has been selected based on the results of polyphasic characterization, which indicate that it represents a new putative species within the genus Nocardiopsis. Two fractions (F2 and F3), prepared from the culture of strain CG3 in soybean medium, exhibited a pronounced antiviral activity against the HCV strain Luc-Jc1. LC-HRESIMS analysis showed different bioactive compounds in both active fractions (F2 and F3), including five polyenic macrolactams (kenalactams A-E), three isoflavone metabolites, along with mitomycin C and one p-phenyl derivative. Furthermore, feeding with 1% of methionine, lysine or alanine as a unique nitrogen source, induced the production of three novel kenalactam derivatives.


Subject(s)
Actinobacteria , Nocardiopsis , Actinobacteria/genetics , Antiviral Agents/pharmacology , DNA, Bacterial/metabolism , Phylogeny , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Soil Microbiology
9.
Microorganisms ; 10(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35888982

ABSTRACT

A novel myxobacterial strain ZKHCc1 1396T was isolated in 2017 from a soil sample collected along Chalus Road connecting Tehran and Mazandaran, Iran. It was a Gram-negative, rod-shaped bacterial strain that displayed the general features of Corallococcus, including gliding and fruiting body formation on agar and microbial lytic activity. Strain ZKHCc1 1396T was characterized as an aerobic, mesophilic, and chemoheterotrophic bacterium resistant to many antibiotics. The major cellular fatty acids were branched-chain iso-C17:0 2-OH, iso-C15:0, iso-C17:1, and iso-C17:0. The strain showed the highest 16S rRNA gene sequence similarity to Corallococcusterminator CA054AT (99.67%) and C. praedator CA031BT (99.17%), and formed a novel branch both in the 16S rRNA gene sequence and phylogenomic tree. The genome size was 9,437,609 bp, with a DNA G + C content of 69.8 mol%. The strain had an average nucleotide identity (ANI) value lower than the species cut-off (95%), and with the digital DNA-DNA hybridization (dDDH) below the 70% threshold compared to the closest type strains. Secondary metabolite and biosynthetic gene cluster analyses revealed the strain's potential to produce novel compounds. Based on polyphasic taxonomic characterization, we propose that strain ZKHCc1 1396T represents a novel species, Corallococcus soli sp. nov. (NCCB 100659T = CIP 111634T).

10.
Mar Drugs ; 20(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35877756

ABSTRACT

The discovery of novel secondary metabolites is actively being pursued in new ecosystems. Sponge-associated bacteria have been in the limelight in recent years on account of their ability to produce bioactive compounds. In this study, heterotrophic bacteria associated with four sponge species were isolated, taxonomically identified, and subjected to screening for the production of bioactive entities against a panel of nine microorganisms, including Gram-positive and negative bacteria, as well as yeast and fungi. Of the 105 isolated strains, 66% were represented by Proteobacteria, 16% by Bacteriodetes, 7% by Actinobacteria, and 11% by Firmicutes. Bioactivity screening revealed that 40% of the total isolated strains showed antimicrobial activity against one or more of the target microorganisms tested. Further, active extracts from selective species were narrowed down by bioassay-guided fractionation and subsequently identified by HR-ESI-MS analyses to locate the active peaks. Presumably responsible compounds for the observed bioactivities were identified as pentadecenoic acid, oleic acid, and palmitoleic acid. One isolate, Qipengyuania pacifica NZ-96T, based on 16S rRNA novelty, was subjected to comparative metabolic reconstruction analysis with its closest phylogenetic neighbors, revealing 79 unique functional roles in the novel isolate. In addition, genome mining of Qipengyuania pacifica NZ-96T revealed three biosynthetic gene clusters responsible for the biosynthesis of terpene, beta lactone, lasso peptide, and hserlactone secondary metabolites. Our results demonstrate the ability to target the sponge microbiome as a potential source of novel microbial life with biotechnological potential.


Subject(s)
Microbiota , Porifera , Animals , Anti-Bacterial Agents , Bacteria/metabolism , Genomics , Phylogeny , Porifera/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
11.
Arch Microbiol ; 204(8): 488, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35835967

ABSTRACT

Three new bacterial strains, WHY3T, WH131T, and WH158T, were isolated and described from the hemolymph of the Pacific oyster Crassostrea gigas utilizing polyphasic taxonomic techniques. The 16S rRNA gene sequence analysis revealed that strain WHY3T was a member of the genus Winogradskyella, whereas strains WHI31T and WH158T were members of the genus Erythrobacter. According to the polygenomic study the three strains formed individual lineages with strong bootstrap support. The comparison of dDDH-and ANI values, percentage of conserved proteins (POCP), and average amino acid identity (AAl) between the three strains and their relatives established that the three strains represented two separate genera. Menaquinone-6 was reported as the major respiratory quinone in strain WHY3T and Ubiquinone-10 for strains WH131T and WH158T, respectively. The major cellular fatty acids for strain WHY3T were C15:0, anteiso-C15:1 ω7c, iso-C15:0, C16:1ω7c. The major cellular fatty acids for strains WH131T and WH158T were C14:02-OH and t18:1ω12 for WH131T and C17:0, and C18:1ω7c for strain WH158T. Positive Sudan Black B staining Indicated the presence of polyhydroxyalkanoic acid granules for strains WH131T and WH158T but not for strain WHY3T. The DNA G + C contents of strains WHY3T, WH131T and WH158T were 34.4, 59.7 and 56.6%, respectively. Gene clusters predicted some important genes involved in the bioremediation process. Due to the accomplishment of polyphasic taxonomy, we propose three novel species Winogradskyella luteola sp.nov. (type strain WHY3T = DSM 111804T = NCCB 100833T), Erythrobacter ani sp.nov. (WH131T = DSM 112099T = NCCB 100824T) and Erythrobacter crassostrea sp.nov. (WH158T = DSM 112102T = NCCB 100877T).


Subject(s)
Crassostrea , Flavobacteriaceae , Sphingomonadaceae , Animals , Bacterial Typing Techniques , Crassostrea/genetics , Crassostrea/microbiology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/genetics , Hemolymph , Nucleic Acid Hybridization , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Antonie Van Leeuwenhoek ; 115(8): 1059-1072, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35732971

ABSTRACT

Four novel strains were isolated: PWU4T and PWU20T were both from soil in Germany, PWU5T was isolated from soil in India and PWU37T was obtained from sheep faeces collected on the Island of Crete. Cells of each were observed to be Gram-negative, strictly aerobic, rod shaped, and to grow optimally between 28 and 34 °C, between pH 7.0 and 8.0 and without the addition of NaCl. The strains were found to be catalase and oxidase-negative and able to grow on most mono- and disaccharides, a few polysaccharides and organic acids. Their predominant menaquinone was identified as MK-7. Their major fatty acids were identified as C16:1 ω7c (PWU4T and PWU20T) and C16:1 ω5c (PWU5T and PWU37T). The DNA G + C contents of strains PWU4T, PWU20T, PWU5T and PWU37T were determined to be 50.2 mol%, 51.6 mol %, 39.8 mol% and 53.8 mol%, respectively. The 16S rRNA gene sequence analysis revealed that the close relatives Ohtaekwangia koreensis 3B-2T and Ohtaekwangia kribbensis 10AOT share less than 93.8% sequence similarity. The strains were classified in two groups, where PWU4T and PWU20T share 93.0% sequence similarity, and PWU5T and PWU37T share 97.5% sequence similarity. However, the members of each group were concluded to represent different species based on the low average nucleotide identity (ANI) of their genomes, 69.7% and 83.8%, respectively. We propose that the four strains represent four novel species of two new genera in the family Cytophagaceae. The type species of the novel genus Chryseosolibacter is Chryseosolibacter histidini gen. nov., sp. nov. with the type strain PWU4T (= DSM 111594T = NCCB 100798T), whilst strain PWU20T (= DSM 111597T = NCCB 100800T) is the type strain of a second species, Chryseosolibacter indicus sp. nov. The type species of the novel genus Dawidia is Dawidia cretensis gen. nov., sp. nov. with the type strain PWU5T (= DSM 111596T = NCCB 100799T), whilst strain PWU37T (= DSM 111595T = NCCB 100801T) is the type stain of a second species, Dawidia soli sp. nov.


Subject(s)
Cytophagaceae , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , Ecosystem , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sheep/genetics , Soil , Vitamin K 2/analysis
13.
Curr Microbiol ; 79(8): 219, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35704100

ABSTRACT

Cream colored bacteria from marine agar, strain WH24, WH77, and WH80 were isolated from the gill of the Crassostrea gigas a Pacific oyster with a filter-feeding habit that compels accompanying bacteria to demonstrate a high metabolic capacity, has proven able to colonize locations with changing circumstances. Based on the 16S rRNA gene sequence, all strains had high similarity to Photobacterium arenosum CAU 1568T (99.72%). This study involved phenotypic traits, phylogenetic analysis, antimicrobial activity evaluation, genome mining, Co-cultivation experiments, and chemical studies of crude extracts using HPLC and LC-HRESIMS. Photobacterium arenosum WH24 and Zooshikella harenae WH53Twere co-cultivated for 3 days in a rotary shaker at 160 rpm at 30 °C, and LC-MS monitored the chemical profiles of the co-cultures on the third day. The UV chromatograms of the extracts of the co-cultivation experiments show that Zooshikella harenae WH53T could be inhibited by strain WH24. The high virulence of Photobacterium arenosum WH24 was confirmed by genome analysis. Gene groups with high virulence potential were detected: tssA (ImpA), tssB (ImpB/vipA), tssC (ImpC/vipB), tssE, tssF (ImpG/vasA), tssG (ImpH/vasB), tssM (IcmF/vasK), tssJ (vasD), tssK (ImpJ/vasE), tssL (ImpK/vasF), clpV (tssH), vasH, hcp, lapP, plpD, and tpsB family.


Subject(s)
Crassostrea , Animals , Crassostrea/microbiology , Gills , North Sea , Photobacterium/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Virulence
14.
Iran J Microbiol ; 14(2): 186-193, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35765561

ABSTRACT

Background and Objectives: DNA extraction is an important step of any molecular experiment. DNA could not be easily extracted from members of actinomycetes by the usual methods of lysis. Due to the low efficiency of the conventional DNA extraction methods, development of an effective technique for DNA extraction of actinobacteria in emergency cases seems to be necessary. Since most of the DNA extraction techniques and commercial kits are not efficient enough to extract DNA from actinobacteria, this study was conducted to improve an efficient method obtained from conventional one to extract DNA from this group of bacteria. Materials and Methods: DNA extraction was performed using five methods (an improved method, Invisorb Spin Plant Mini Kit, EZ-10 Spin Column, Sarrbrucken method (HZI, Germany) and Kirby Bauer's method). To evaluate the quantity and quality of extracted genomic DNA, UV absorbance of all samples and efficiency of polymerase chain reaction (PCR) were evaluated. Results: Overall, the results revealed that the highest quantity (up to 4000 ng/µl) and good quality of DNA was obtained using introduced DNA extraction method. Conclusion: Results indicated that recently introduced improved method was more efficient for extraction of DNA from actinobacteria for DDH (DNA-DNA hybridization) test and for those require the high concentration of DNA.

15.
Antibiotics (Basel) ; 11(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35625301

ABSTRACT

Actinobacteria isolated from untapped environments and exposed to extreme conditions such as saltpans are a promising source of novel bioactive compounds. These microorganisms can provide new molecules through either the biosynthetic pathway or the biotransformation of organic molecules. In the present study, we performed a chemical metabolic screening of secondary metabolites secreted by the new strain CG3, which was isolated from a saltpan located in the Sahara of Algeria, via high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-ESI-HRMS). The results indicated that this strain produced five new polyene macrolactams, kenalactams A-E, along with two known compounds, mitomycin C and 6″-hydroxy-4,2',3',4″ tetramethoxy-p-terphenyl. Furthermore, the CG3 isolate could have excellent properties for converting the aglycone isoflavone glycitein to the compounds 6,7-dimethoxy-3-(4-methoxyphenyl)chromen-4-one (50) and 6,7-dimethoxy-3-phenylchromen-4-one (54), and the isoflavone genistein can be converted to 5,7-dimethoxy-3-(4-methoxyphenyl)chromen-4-one (52). Docking studies and molecular dynamics simulations indicated that these three isoflavones, generated via biotransformation, are potent inhibitors of the target protein aromatase (CYP19A1); consequently, they can be used to prevent breast cancer risk in postmenopausal women.

16.
J Appl Microbiol ; 133(2): 1099-1114, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35603677

ABSTRACT

AIMS: Explore the diversity of culturable actinobacteria isolated from the Pacific oyster Crassostrea gigas with special emphasis on their antimicrobial activity. METHODS AND RESULTS: For the characterization of the isolated actinobacteria, a polyphasic approach was adopted and thereby phenotypic descriptions, phylogenetic analysis, evaluations of antimicrobial activities and chemical analyses of crude extracts through HPLC and LC-HRESIMS were performed. Five strains were isolated from C. gigas. The 16S rRNA gene analysis revealed that three of them were taxonomically affiliated to the genus Streptomyces and the other two strains were related to Micromonospora. High inhibition was detected against different test microorganisms such as Candida albicans, Staphylococcus aureus, Bacillus subtilis and Mycobacterium smegmatis. On the basis of the chemical analysis, 11 compounds from the active fractions of the crude extracts were determined, and 8 were related putatively to previously reported compounds. CONCLUSIONS: Actinobacteria isolated from C. gigas represent an interesting reservoir of antimicrobial compounds, and further study to uncover the full capacity of this source is encouraged. SIGNIFICANCE AND IMPACT: At present, the study of actinobacteria and their antimicrobial potential from uncommon sources as C. gigas is vital to the development of new therapeutic agents to cope with the widespread resistance of human pathogens.


Subject(s)
Actinobacteria , Anti-Infective Agents , Crassostrea , Ostreidae , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Complex Mixtures , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
Arch Microbiol ; 204(2): 123, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34994917

ABSTRACT

Several different techniques were employed for the isolation of Nannocystis from various sources. A polyphasic approach was used for identification. Twelve strains of N. pusilla, N. exedens, and N. konarekensis with distinctive distribution between climates were identified. The bioactivity was examined against a panel of eight bacteria, two yeasts, and one fungus; cytotoxicity was tested on the L929 fibroblast cell line. Eleven strains mainly inhibit Gram-positive bacteria, and only one isolate was cytotoxic. The extract analyses by HPLC and LC-MS were compared to Myxobase, and eight different compounds were detected; a correlation was observed between compounds and producing species. 70% of strains had the potential to produce structurally diverse compounds. Nannochelins and althiomycin were the most abundant metabolites. The discovery of a new species of Nannocystis and the high potentiality of strains to produce secondary metabolites encourage further sampling and in-depth analysis of extracts to find new active metabolites.


Subject(s)
Antineoplastic Agents , Biological Products , Myxococcales , Bacteria , Iran
18.
Microbiol Resour Announc ; 10(50): e0091821, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34913719

ABSTRACT

Amycolatopsis sp. strain DSM 110486 and Pseudonocardia sp. strain DSM 110487 are two novel actinomycete species that were isolated from Hengam Island beach sand from the Persian Gulf. Here, we present the complete genome sequences of DSM 110486 and DSM 110487, with sizes of 10.98 Mbp and 10.33 Mbp, respectively.

19.
Mar Drugs ; 19(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34822482

ABSTRACT

Two known Polybrominated Diphenyl Ethers (PBDEs), 3,4,5-tribromo-2-(2',4'-dibromophenoxy)phenol (1d) and 3,4,5,6-tetrabromo-2-(2',4'-dibromophenoxy)phenol (2b), were isolated from the Indonesian marine sponge Lamellodysidea herbacea. The structure was confirmed using 13C chemical shift average deviation and was compared to the predicted structures and recorded chemical shifts in previous studies. We found a wide range of bioactivities from the organic crude extract, such as (1) a strong deterrence against the generalist pufferfish Canthigaster solandri, (2) potent inhibition against environmental and human pathogenic bacterial and fungal strains, and (3) the inhibition of the Hepatitis C Virus (HCV). The addition of a bromine atom into the A-ring of compound 2b resulted in higher fish feeding deterrence compared to compound 1d. On the contrary, compound 2b showed only more potent inhibition against the Gram-negative bacteria Rhodotorula glutinis (MIC 2.1 µg/mL), while compound 1d showed more powerful inhibition against the other human pathogenic bacteria and fungi. The first report of a chemical defense by compounds 1d and 2b against fish feeding and environmental relevant bacteria, especially pathogenic bacteria, might be one reason for the widespread occurrence of the shallow water sponge Lamellodysidea herbacea in Indonesia and the Indo-Pacific.


Subject(s)
Antiviral Agents/pharmacology , Halogenated Diphenyl Ethers/pharmacology , Hepacivirus/drug effects , Porifera , Animals , Antiviral Agents/chemistry , Aquatic Organisms , Ecosystem , Halogenated Diphenyl Ethers/chemistry , Indonesia , Microbial Sensitivity Tests
20.
Antonie Van Leeuwenhoek ; 114(10): 1483-1496, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34355285

ABSTRACT

Strain M2T was isolated from the beach of Cuxhaven, Wadden Sea, Germany, in course of a program to attain new producers of bioactive natural products. Strain M2T produces litoralimycin and sulfomycin-type thiopeptides. Bioinformatic analysis revealed a potential biosynthetic gene cluster encoding for the M2T thiopeptides. The strain is Gram-stain-positive, rod shaped, non-motile, spore forming, showing a yellow colony color and forms extensively branched substrate mycelium and aerial hyphae. Inferred from the 16S rRNA gene phylogeny strain M2T affiliates with the genus Streptomonospora. It shows 96.6% 16S rRNA gene sequence similarity to the type species Streptomonospora salina DSM 44593 T and forms a distinct branch with Streptomonospora sediminis DSM 45723 T with 97.0% 16S rRNA gene sequence similarity. Genome-based phylogenetic analysis revealed that M2T is closely related to Streptomonospora alba YIM 90003 T with a digital DNA-DNA hybridisation (dDDH) value of 26.6%. The predominant menaquinones of M2T are MK-10(H6), MK-10(H8), and MK-11(H6) (> 10%). Major cellular fatty acids are iso-C16:0, anteiso C17:0 and C18:0 10-methyl. The polar lipid profile consisted of diphosphatidylglycerol phosphatidyl glycerol, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, three glycolipids, two unknown phospholipids, and two unknown lipids. The genome size of type strain M2T is 5,878,427 bp with 72.1 mol % G + C content. Based on the results obtained from phylogenetic and chemotaxonomic studies, strain M2T (= DSM 106425 T = NCCB 100650 T) is considered to represent a novel species within the genus Streptomonospora for which the name Streptomonospora litoralis sp. nov. is proposed.


Subject(s)
Sand , Actinobacteria , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...