Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Liver Int ; 44(3): 760-775, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38217387

ABSTRACT

BACKGROUND AND AIMS: Drug-induced liver injury (DILI) is one of the most frequent reasons for failure of drugs in clinical trials or market withdrawal. Early assessment of DILI risk remains a major challenge during drug development. Here, we present a mechanism-based weight-of-evidence approach able to identify certain candidate compounds with DILI liabilities due to mitochondrial toxicity. METHODS: A total of 1587 FDA-approved drugs and 378 kinase inhibitors were screened for cellular stress response activation associated with DILI using an imaging-based HepG2 BAC-GFP reporter platform including the integrated stress response (CHOP), DNA damage response (P21) and oxidative stress response (SRXN1). RESULTS: In total 389, 219 and 104 drugs were able to induce CHOP-GFP, P21-GFP and SRXN1-GFP expression at 50 µM respectively. Concentration response analysis identified 154 FDA-approved drugs as critical CHOP-GFP inducers. Based on predicted and observed (pre-)clinical DILI liabilities of these drugs, nine antimycotic drugs (e.g. butoconazole, miconazole, tioconazole) and 13 central nervous system (CNS) agents (e.g. duloxetine, fluoxetine) were selected for transcriptomic evaluation using whole-genome RNA-sequencing of primary human hepatocytes. Gene network analysis uncovered mitochondrial processes, NRF2 signalling and xenobiotic metabolism as most affected by the antimycotic drugs and CNS agents. Both the selected antimycotics and CNS agents caused impairment of mitochondrial oxygen consumption in both HepG2 and primary human hepatocytes. CONCLUSIONS: Together, the results suggest that early pre-clinical screening for CHOP expression could indicate liability of mitochondrial toxicity in the context of DILI, and, therefore, could serve as an important warning signal to consider during decision-making in drug development.


Subject(s)
Chemical and Drug Induced Liver Injury , Hepatocytes , Humans , Hep G2 Cells , Hepatocytes/metabolism , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Oxidative Stress , Gene Expression Profiling
2.
J Chem Inf Model ; 63(17): 5433-5445, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37616385

ABSTRACT

Oxidative stress is the consequence of an abnormal increase of reactive oxygen species (ROS). ROS are generated mainly during the metabolism in both normal and pathological conditions as well as from exposure to xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery involved in redox processes and, on the other hand, reduce the effectiveness of the antioxidant activity. Such dysregulation may lead to oxidative damage when combined with oxidative stress overpassing the cell capacity to detoxify ROS. In this work, a green fluorescent protein (GFP)-tagged nuclear factor erythroid 2-related factor 2 (NRF2)-regulated sulfiredoxin reporter (Srxn1-GFP) was used to measure the antioxidant response of HepG2 cells to a large series of drug and drug-like compounds (2230 compounds). These compounds were then classified as positive or negative depending on cellular response and distributed among different modeling groups to establish structure-activity relationship (SAR) models. A selection of models was used to prospectively predict oxidative stress induced by a new set of compounds subsequently experimentally tested to validate the model predictions. Altogether, this exercise exemplifies the different challenges of developing SAR models of a phenotypic cellular readout, model combination, chemical space selection, and results interpretation.


Subject(s)
Oxidative Stress , Xenobiotics , Humans , Reactive Oxygen Species , Hep G2 Cells , Prospective Studies , Structure-Activity Relationship
3.
Toxicol In Vitro ; 84: 105419, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35724838

ABSTRACT

A comprehensive understanding of the dynamic activation and crosstalk between different cellular stress response pathways that drive cell adversity is crucial in chemical safety assessment. Various chemicals have electrophilic properties that drive cell injury responses in particular oxidative stress signaling and inflammatory signaling. Here we used bacterial artificial chromosome-based GFP cellular stress reporters with live cell confocal imaging, to systematically monitor the differential modulation of the dynamics of stress pathway activation by six different soft electrophiles: sulforaphane, andrographolide, diethyl maleate, CDDO-Me, ethacrynic acid and tert-butyl hydroquinone. The various soft electrophiles showed differential potency and dynamics of Nrf2 activation and nuclear translocation. These differences in Nrf2 dynamics correlated with distinct activation pattern of Nrf2 downstream targets SRNX1 and HMOX1. All soft electrophiles caused a strong dose dependent suppression of a cytokine-induced NFĸB response represented by suppression of NFĸB nuclear oscillation and inhibition of the downstream target gene activation A20 and ICAM1, which followed the potency of Nrf2 modulation but occurred at higher concentration close to saturation of Nrf2 activation. RNAi-based depletion of RelA resulted in a prolonged presence of Nrf2 in the nucleus after soft electrophile treatment; depletion of Nrf2 caused the induction of NFĸB signaling and activation of its downstream targets A20 and ICAM1. A systematic transcriptome analysis confirmed these effects by soft electrophiles on Nrf2 and NFκB signaling crosstalk in human induced-pluripotent stem cell-derived hepatocyte-like cells. Altogether our data indicate that modulation of Nrf2 by soft electrophiles may have consequences for efficient inflammatory signaling.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Antioxidants/pharmacology , Hepatocytes , Humans , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oleanolic Acid/analogs & derivatives , Oxidative Stress
5.
Biochem Pharmacol ; 190: 114591, 2021 08.
Article in English | MEDLINE | ID: mdl-33957093

ABSTRACT

Drug-induced liver injury (DILI) is the most prevalent adversity encountered in drug development and clinical settings leading to urgent needs to understand the underlying mechanisms. In this study, we have systematically investigated the dynamics of the activation of cellular stress response pathways and cell death outcomes upon exposure of a panel of liver toxicants using live cell imaging of fluorescent reporter cell lines. We established a comprehensive temporal dynamic response profile of a large set of BAC-GFP HepG2 cell lines representing the following components of stress signaling: i) unfolded protein response (UPR) [ATF4, XBP1, BIP and CHOP]; ii) oxidative stress [NRF2, SRXN1, HMOX1]; iii) DNA damage [P53, P21, BTG2, MDM2]; and iv) NF-κB pathway [A20, ICAM1]. We quantified the single cell GFP expression as a surrogate for endogenous protein expression using live cell imaging over > 60 h upon exposure to 14 DILI compounds at multiple concentrations. Using logic-based ordinary differential equation (Logic-ODE), we modelled the dynamic profiles of the different stress responses and extracted specific descriptors potentially predicting the progressive outcomes. We identified the activation of ATF4-CHOP axis of the UPR as the key pathway showing the highest correlation with cell death upon DILI compound perturbation. Knocking down main components of the UPR provided partial protection from compound-induced cytotoxicity, indicating a complex interplay among UPR components as well as other stress pathways. Our results suggest that a systematic analysis of the temporal dynamics of ATF4-CHOP axis activation can support the identification of DILI risk for new candidate drugs.


Subject(s)
Activating Transcription Factor 4/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Models, Biological , Oxidative Stress/physiology , Single-Cell Analysis/methods , Transcription Factor CHOP/metabolism , Chemical and Drug Induced Liver Injury/pathology , Forecasting , Hep G2 Cells , Humans , Unfolded Protein Response/drug effects , Unfolded Protein Response/physiology
6.
Toxicol In Vitro ; 73: 105107, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33545341

ABSTRACT

Various adaptive cellular stress response pathways are critical in the pathophysiology of liver disease and drug-induced liver injury. Human-induced pluripotent stem cell (hiPSC)-derived hepatocyte-like cells (HLCs) provide a promising tool to study cellular stress response pathways, but in this context there is limited insight on how HLCs compare to other in vitro liver models. Here, we systematically compared the transcriptomic profiles upon chemical activation in HLCs, hiPSC, primary human hepatocytes (PHH) and HepG2 liver cancer cells. We used targeted RNA-sequencing to map concentration transcriptional response using benchmark concentration modeling for the various stress responses in the different test systems. We found that HLCs are very sensitive towards oxidative stress and inflammation conditions as corresponding genes were activated at over 3 fold lower concentrations of the corresponding pathway inducing compounds as compared to PHH. PHH were the most sensitive model when studying UPR related effects. Due to the non-proliferative nature of PHH and HLCs, these do not pose a good/sensitive model to pick up DNA damage responses, while hiPSC and HepG2 were more sensitive in these conditions. We envision that this study contributes to a better understanding on how HLCs can contribute to the assessment of cell physiological stress response activation to predict hepatotoxic events.


Subject(s)
Hepatocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Liver Neoplasms/genetics , Oxidative Stress/genetics , Transcriptome , Aged , Aged, 80 and over , Cell Differentiation , Hep G2 Cells , Humans , Liver/cytology , Male
7.
PLoS One ; 15(9): e0239367, 2020.
Article in English | MEDLINE | ID: mdl-32986742

ABSTRACT

Nuclear factor erythroid-2 related factor 2 (NRF2) encoded by the NFE2L2 gene is a transcription factor critical for protecting cells from chemically-induced oxidative stress. We developed computational procedures to identify chemical modulators of NRF2 in a large database of human microarray data. A gene expression biomarker was built from statistically-filtered gene lists derived from microarray experiments in primary human hepatocytes and cancer cell lines exposed to NRF2-activating chemicals (oltipraz, sulforaphane, CDDO-Im) or in which the NRF2 suppressor Keap1 was knocked down by siRNA. Directionally consistent biomarker genes were further filtered for those dependent on NRF2 using a microarray dataset from cells after NFE2L2 siRNA knockdown. The resulting 143-gene biomarker was evaluated as a predictive tool using the correlation-based Running Fisher algorithm. Using 59 gene expression comparisons from chemically-treated cells with known NRF2 activating potential, the biomarker gave a balanced accuracy of 93%. The biomarker was comprised of many well-known NRF2 target genes (AKR1B10, AKR1C1, NQO1, TXNRD1, SRXN1, GCLC, GCLM), 69% of which were found to be bound directly by NRF2 using ChIP-Seq. NRF2 activity was assessed across ~9840 microarray comparisons from ~1460 studies examining the effects of ~2260 chemicals in human cell lines. A total of 260 and 43 chemicals were found to activate or suppress NRF2, respectively, most of which have not been previously reported to modulate NRF2 activity. Using a NRF2-responsive reporter gene in HepG2 cells, we confirmed the activity of a set of chemicals predicted using the biomarker. The biomarker will be useful for future gene expression screening studies of environmentally-relevant chemicals.


Subject(s)
Data Mining , Databases, Genetic , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Transcriptome , Biomarkers/metabolism , Hep G2 Cells , Humans
8.
Arch Toxicol ; 93(10): 2895-2911, 2019 10.
Article in English | MEDLINE | ID: mdl-31552476

ABSTRACT

Adaptive stress response pathways play a key role in the switch between adaptation and adversity, and are important in drug-induced liver injury. Previously, we have established an HepG2 fluorescent protein reporter platform to monitor adaptive stress response activation following drug treatment. HepG2 cells are often used in high-throughput primary toxicity screening, but metabolizing capacity in these cells is low and repeated dose toxicity testing inherently difficult. Here, we applied our bacterial artificial chromosome-based GFP reporter cell lines representing Nrf2 activation (Srxn1-GFP and NQO1-GFP), unfolded protein response (BiP-GFP and Chop-GFP), and DNA damage response (p21-GFP and Btg2-GFP) as long-term differentiated 3D liver-like spheroid cultures. All HepG2 GFP reporter lines differentiated into 3D spheroids similar to wild-type HepG2 cells. We systematically optimized the automated imaging and quantification of GFP reporter activity in individual spheroids using high-throughput confocal microscopy with a reference set of DILI compounds that activate these three stress response pathways at the transcriptional level in primary human hepatocytes. A panel of 33 compounds with established DILI liability was further tested in these six 3D GFP reporters in single 48 h treatment or 6 day daily repeated treatment. Strongest stress response activation was observed after 6-day repeated treatment, with the BiP and Srxn1-GFP reporters being most responsive and identified particular severe-DILI-onset compounds. Compounds that showed no GFP reporter activation in two-dimensional (2D) monolayer demonstrated GFP reporter stress response activation in 3D spheroids. Our data indicate that the application of BAC-GFP HepG2 cellular stress reporters in differentiated 3D spheroids is a promising strategy for mechanism-based identification of compounds with liability for DILI.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Hepatocytes/drug effects , Spheroids, Cellular/drug effects , Cell Differentiation , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , DNA Damage/drug effects , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Hep G2 Cells , Hepatocytes/pathology , High-Throughput Screening Assays/methods , Humans , Microscopy, Confocal/methods , Spheroids, Cellular/pathology , Stress, Physiological/drug effects
9.
Biochem Pharmacol ; 169: 113640, 2019 11.
Article in English | MEDLINE | ID: mdl-31536726

ABSTRACT

Enhanced expression and activity of protein kinases are critical in tumor cell proliferation and cancer progression. These various cancer-related kinases form intricate interdependent signaling networks. Evaluation of the effect of various kinase inhibitors on these networks is critical to understand kinase inhibitor efficacy in cancer therapy. The dynamic activation of some kinases can be monitored by fluorescence resonance energy transfer (FRET) biosensors with high temporal resolution. Here, we established a FRET biosensor-based high throughput imaging approach to determine ERK and AKT activity in two triple negative breast cancer (TNBC) cell lines HCC1806 and Hs578T. FRET functionality was systematically evaluated using EGF stimulation and different MEK and AKT inhibitors, respectively. Next, we assessed the effect of a kinase inhibitor library containing >350 different kinase inhibitors (KIs) on ERK and AKT kinase activity using a FRET high-throughput screening setting. Suppression of FRET-ERK activity was generally positively correlated with the proliferation phenotype against inhibitors targeting MAPK signaling in both cell lines containing FRET-ERK reporter. AKT inhibitor (AKTi) resistant HCC1806 showed decreased proliferation associated with downregulated dynamics of FRET-ERK when treated with KIs targeting protein receptor tyrosine kinase (RTK). Yet, MEK inhibitor (MEKi) resistant Hs578T showed positively correlated FRET-AKT and proliferative responses against different PI3K and AKT inhibitors. Altogether, our data demonstrate the feasibility to integrate high throughput imaging-based screening of intracellular kinase activity using FRET-based biosensors in assessing kinase specificity and possible signaling crosstalk in direct relation to therapeutic outcome.


Subject(s)
Biosensing Techniques/methods , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorescence Resonance Energy Transfer/methods , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , Female , Humans , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy
10.
Nat Commun ; 10(1): 2983, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31278301

ABSTRACT

Ttriple-negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype. Enhanced TNBC cell motility is a prerequisite of TNBC cell dissemination. Here, we apply an imaging-based RNAi phenotypic cell migration screen using two highly motile TNBC cell lines (Hs578T and MDA-MB-231) to provide a repository of signaling determinants that functionally drive TNBC cell motility. We have screened ~4,200 target genes individually and discovered 133 and 113 migratory modulators of Hs578T and MDA-MB-231, respectively, which are linked to signaling networks predictive for breast cancer progression. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF are essential for cancer cell migration, amplified in human primary breast tumors and associated with metastasis-free survival. Depletion of PRPF4B, BUD31 and BPTF causes primarily down regulation of genes involved in focal adhesion and ECM-interaction pathways. PRPF4B is essential for TNBC metastasis formation in vivo, making PRPF4B a candidate for further drug development.


Subject(s)
Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Triple Negative Breast Neoplasms/pathology , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Cell Line, Tumor , Cohort Studies , Datasets as Topic , Disease-Free Survival , Extracellular Matrix/metabolism , Female , Focal Adhesions/genetics , Humans , Intravital Microscopy , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , RNA Interference , RNA Splicing/genetics , RNA, Small Interfering/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Signal Transduction/genetics , Survival Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality
12.
Methods Mol Biol ; 1981: 187-202, 2019.
Article in English | MEDLINE | ID: mdl-31016656

ABSTRACT

Exposure to oxidative radical species and cytokine-mediated inflammatory stress are established contributors to hepatocyte cell death during cholestasis. Cellular counter measures against those stressors are called adaptive stress response pathways. While in early stages of the disease adaptive stress pathways protect the hepatocytes, in later stages during prolonged stressed conditions they fail. The quantitative imaging-based assessment of cellular stress response pathways using the HepG2 BAC-GFP response reporter platform is a powerful strategy to evaluate the impact of chemical substances and gene knockdown on activation of adaptive stress response pathways, hence allowing systematic screening for positive or negative influences on cholestasis progression. This protocol allows the application of a highly versatile screening tool for a systematic evaluation of the effect of compounds having cholestasis liability and affected genes during cholestatic injury on cellular adaptive stress pathway activation. The approach involves high-throughput live-cell visualization of GFP-tagged key proteins of the oxidative stress response/Nrf2 pathway and inflammatory cytokine signaling. Quantitative image analysis of temporal responses of individual cells is followed by informatics analysis. The overall practical approaches are discussed in this chapter.


Subject(s)
Cholestasis/metabolism , Microscopy/methods , Chemical and Drug Induced Liver Injury/metabolism , Hep G2 Cells , Hepatocytes/metabolism , Humans , Microscopy, Fluorescence , Signal Transduction/physiology
13.
Front Genet ; 9: 429, 2018.
Article in English | MEDLINE | ID: mdl-30333853

ABSTRACT

Toxicological responses to chemical insult are largely regulated by transcriptionally activated pathways that may be independent, correlated and partially or fully overlapping. Investigating the dynamics of the interactions between stress responsive transcription factors from toxicogenomic data and defining the signature of each of them is an additional step toward a system level understanding of perturbation driven mechanisms. To this end, we investigated the segregation of the genes belonging to the three following transcriptionally regulated pathways: the AhR pathway, the Nrf2 pathway and the ATF4 pathway. Toxicogenomic datasets from three projects (carcinoGENOMICS, Predict-IV and TG-GATEs) obtained in various experimental conditions (in human and rat in vitro liver and kidney models and rat in vivo, with bolus administration and with repeated doses) were combined and consolidated where overlaps between datasets existed. A bioinformatic analysis was performed to refine pathways' signatures and to create chemical activation capacity scores to classify chemicals by their potency and selectivity of activation of each pathway. With some refinement such an approach may improve chemical safety classification and allow biological read across on a pathway level.

14.
Arch Toxicol ; 92(5): 1797-1814, 2018 05.
Article in English | MEDLINE | ID: mdl-29502165

ABSTRACT

Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Models, Biological , Stress, Physiological/physiology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dose-Response Relationship, Drug , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hep G2 Cells , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Single-Cell Analysis , Stress, Physiological/drug effects , Support Vector Machine , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
15.
Arch Toxicol ; 91(3): 1367-1383, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27358234

ABSTRACT

Adaptive cellular stress responses are paramount in the healthy control of cell and tissue homeostasis and generally activated during toxicity in a chemical-specific manner. Here, we established a platform containing a panel of distinct adaptive stress response reporter cell lines based on BAC-transgenomics GFP tagging in HepG2 cells. Our current panel of eleven BAC-GFP HepG2 reporters together contains (1) upstream sensors, (2) downstream transcription factors and (3) their respective target genes, representing the oxidative stress response pathway (Keap1/Nrf2/Srxn1), the unfolded protein response in the endoplasmic reticulum (Xbp1/Atf4/BiP/Chop) and the DNA damage response (53bp1/p53/p21). Using automated confocal imaging and quantitative single-cell image analysis, we established that all reporters allowed the time-resolved, sensitive and mode-of-action-specific activation of the individual BAC-GFP reporter cell lines as defined by a panel of pathway-specific training compounds. Implementing the temporal pathway activity information increased the discrimination of training compounds. For a set of >30 hepatotoxicants, the induction of Srxn1, BiP, Chop and p21 BAC-GFP reporters correlated strongly with the transcriptional responses observed in cryopreserved primary human hepatocytes. Together, our data indicate that a phenotypic adaptive stress response profiling platform will allow a high throughput and time-resolved classification of chemical-induced stress responses, thus assisting in the future mechanism-based safety assessment of chemicals.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Chromosomes, Artificial, Bacterial , Green Fluorescent Proteins/analysis , Molecular Imaging/methods , Toxicity Tests/methods , DNA Damage/drug effects , DNA Damage/genetics , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hep G2 Cells/drug effects , Hepatocytes/drug effects , Humans , Oxidative Stress/drug effects , Oxidative Stress/genetics , Stress, Physiological/drug effects , Stress, Physiological/genetics , Unfolded Protein Response/drug effects , Unfolded Protein Response/genetics
16.
Chem Res Toxicol ; 30(4): 923-933, 2017 04 17.
Article in English | MEDLINE | ID: mdl-27982581

ABSTRACT

A quantitative dynamics pathway map of the Nrf2-mediated oxidative stress response and p53-related DNA damage response pathways as well as the cross-talk between these pathways has not systematically been defined. To allow the dynamic single cell evaluation of these pathways, we have used BAC-GFP recombineering to tag for each pathway's three key components: for the oxidative stress response, Keap1-GFP, Nrf2-GFP, and Srxn1-GFP; for the DNA damage response, 53bp1-GFP, p53-GFP, and p21-GFP. The dynamic activation of these individual components was assessed using quantitative high throughput confocal microscopy after treatment with a broad concentration range of diethyl maleate (DEM; to induce oxidative stress) and etoposide (to induce DNA damage). DEM caused a rapid activation of Nrf2, which returned to baseline levels at low concentrations but remained sustained at high concentrations. Srxn1-GFP induction and Keap1-GFP translocation to autophagosomes followed later, with upper boundaries reached at high concentrations, close to the onset of cell death. Etoposide caused rapid accumulation of 53bp1-GFP in DNA damage foci, which was later followed by the concentration dependent nuclear accumulation of p53-GFP and subsequent induction of p21-GFP. While etoposide caused activation of Srxn1-GFP, a modest activation of DNA damage reporters was observed for DEM at high concentrations. Interestingly, Nrf2 knockdown caused an inhibition of the DNA damage response at high concentrations of etoposide, while Keap1 knockdown caused an enhancement of the DNA damage response already at low concentrations of etoposide. Knockdown of p53 did not affect the oxidative stress response. Altogether, the current stress response landscapes provide insight in the time course responses of and cross-talk between oxidative stress and DNA-damage and defines the tipping points where cell injury may switch from adaptation to injury.


Subject(s)
DNA Damage/drug effects , Etoposide/toxicity , Maleates/toxicity , Oxidative Stress/drug effects , Signal Transduction/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Genes, Reporter , Hep G2 Cells , Humans , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Oxidoreductases Acting on Sulfur Group Donors/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects
17.
Arch Toxicol ; 90(5): 1163-79, 2016 May.
Article in English | MEDLINE | ID: mdl-26026609

ABSTRACT

Drug-induced liver injury (DILI) is an important problem both in the clinic and in the development of new safer medicines. Two pivotal adaptation and survival responses to adverse drug reactions are oxidative stress and cytokine signaling based on the activation of the transcription factors Nrf2 and NF-κB, respectively. Here, we systematically investigated Nrf2 and NF-κB signaling upon DILI-related drug exposure. Transcriptomics analyses of 90 DILI compounds in primary human hepatocytes revealed that a strong Nrf2 activation is associated with a suppression of endogenous NF-κB activity. These responses were translated into quantitative high-content live-cell imaging of induction of a selective Nrf2 target, GFP-tagged Srxn1, and the altered nuclear translocation dynamics of a subunit of NF-κB, GFP-tagged p65, upon TNFR signaling induced by TNFα using HepG2 cells. Strong activation of GFP-Srxn1 expression by DILI compounds typically correlated with suppression of NF-κB nuclear translocation, yet reversely, activation of NF-κB by TNFα did not affect the Nrf2 response. DILI compounds that provided strong Nrf2 activation, including diclofenac, carbamazepine and ketoconazole, sensitized toward TNFα-mediated cytotoxicity. This was related to an adaptive primary protective response of Nrf2, since loss of Nrf2 enhanced this cytotoxic synergy with TNFα, while KEAP1 downregulation was cytoprotective. These data indicate that both Nrf2 and NF-κB signaling may be pivotal in the regulation of DILI. We propose that the NF-κB-inhibiting effects that coincide with a strong Nrf2 stress response likely sensitize liver cells to pro-apoptotic signaling cascades induced by intrinsic cytotoxic pro-inflammatory cytokines.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/drug effects , Liver/drug effects , NF-E2-Related Factor 2/metabolism , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/toxicity , Active Transport, Cell Nucleus , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Computational Biology , Databases, Genetic , Dose-Response Relationship, Drug , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Hep G2 Cells , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver/metabolism , Liver/pathology , NF-E2-Related Factor 2/genetics , Oxidoreductases Acting on Sulfur Group Donors/biosynthesis , Oxidoreductases Acting on Sulfur Group Donors/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/biosynthesis , Signal Transduction/drug effects , Time Factors , Transcription Factor RelA/genetics , Transfection
18.
Breast Cancer Res ; 17: 97, 2015 Jul 19.
Article in English | MEDLINE | ID: mdl-26187749

ABSTRACT

INTRODUCTION: Insulin analogues are designed to have improved pharmacokinetic parameters compared to regular human insulin. This provides a sustained control of blood glucose levels in diabetic patients. All novel insulin analogues are tested for their mitogenic side effects, however these assays do not take into account the molecular mode of action of different insulin analogues. Insulin analogues can bind the insulin receptor and the insulin-like growth factor 1 receptor with different affinities and consequently will activate different downstream signaling pathways. METHODS: Here we used a panel of MCF7 human breast cancer cell lines that selectively express either one of the isoforms of the INSR or the IGF1R. We applied a transcriptomics approach to assess the differential transcriptional programs activated in these cells by either insulin, IGF1 or X10 treatment. RESULTS: Based on the differentially expressed genes between insulin versus IGF1 and X10 treatment, we retrieved a mitogenic classifier gene set. Validation by RT-qPCR confirmed the robustness of this gene set. The translational potential of these mitogenic classifier genes was examined in primary human mammary cells and in mammary gland tissue of mice in an in vivo model. The predictive power of the classifier genes was evaluated by testing all commercial insulin analogues in the in vitro model and defined X10 and glargine as the most potent mitogenic insulin analogues. CONCLUSIONS: We propose that these mitogenic classifier genes can be used to test the mitogenic potential of novel insulin analogues as well as other alternative molecules with an anticipated affinity for the IGF1R.


Subject(s)
Epithelial Cells/metabolism , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Mammary Glands, Human/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/physiology , Animals , Antigens, CD/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Female , Humans , Insulin-Like Growth Factor I/metabolism , MCF-7 Cells , Mammary Glands, Human/drug effects , Mice , Receptor, Insulin/metabolism , Signal Transduction/drug effects
19.
Arch Toxicol ; 88(12): 2261-87, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25399406

ABSTRACT

A long-term goal of numerous research projects is to identify biomarkers for in vitro systems predicting toxicity in vivo. Often, transcriptomics data are used to identify candidates for further evaluation. However, a systematic directory summarizing key features of chemically influenced genes in human hepatocytes is not yet available. To bridge this gap, we used the Open TG-GATES database with Affymetrix files of cultivated human hepatocytes incubated with chemicals, further sets of gene array data with hepatocytes from human donors generated in this study, and publicly available genome-wide datasets of human liver tissue from patients with non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular cancer (HCC). After a curation procedure, expression data of 143 chemicals were included into a comprehensive biostatistical analysis. The results are summarized in the publicly available toxicotranscriptomics directory ( http://wiki.toxbank.net/toxicogenomics-map/ ) which provides information for all genes whether they are up- or downregulated by chemicals and, if yes, by which compounds. The directory also informs about the following key features of chemically influenced genes: (1) Stereotypical stress response. When chemicals induce strong expression alterations, this usually includes a complex but highly reproducible pattern named 'stereotypical response.' On the other hand, more specific expression responses exist that are induced only by individual compounds or small numbers of compounds. The directory differentiates if the gene is part of the stereotypical stress response or if it represents a more specific reaction. (2) Liver disease-associated genes. Approximately 20 % of the genes influenced by chemicals are up- or downregulated, also in liver disease. Liver disease genes deregulated in cirrhosis, HCC, and NASH that overlap with genes of the aforementioned stereotypical chemical stress response include CYP3A7, normally expressed in fetal liver; the phase II metabolizing enzyme SULT1C2; ALDH8A1, known to generate the ligand of RXR, one of the master regulators of gene expression in the liver; and several genes involved in normal liver functions: CPS1, PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and ADH4. (3) Unstable baseline genes. The process of isolating and the cultivation of hepatocytes was sufficient to induce some stress leading to alterations in the expression of genes, the so-called unstable baseline genes. (4) Biological function. Although more than 2,000 genes are transcriptionally influenced by chemicals, they can be assigned to a relatively small group of biological functions, including energy and lipid metabolism, inflammation and immune response, protein modification, endogenous and xenobiotic metabolism, cytoskeletal organization, stress response, and DNA repair. In conclusion, the introduced toxicotranscriptomics directory offers a basis for a rationale choice of candidate genes for biomarker evaluation studies and represents an easy to use source of background information on chemically influenced genes.


Subject(s)
Databases, Genetic , Gene Expression/drug effects , Hepatocytes/drug effects , Liver Diseases/genetics , Small Molecule Libraries/toxicity , Toxicogenetics/methods , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Principal Component Analysis , Small Molecule Libraries/chemistry , Toxicogenetics/statistics & numerical data
20.
Toxicol Sci ; 140(1): 144-59, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752500

ABSTRACT

Drug-induced liver injury (DILI) is an important clinical problem. Here, we used a genomics approach to in detail investigate the hypothesis that critical drug-induced toxicity pathways act in synergy with the pro-inflammatory cytokine tumor necrosis factor α (TNFα) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ∼80 DILI compounds in primary human hepatocytes. Compounds displaying weak or no TNFα synergism, namely ketoconazole, nefazodone, and methotrexate, failed to synchronously induce both pathways. The ER stress induced was primarily related to protein kinase R-like ER kinase (PERK) and activating transcription factor 4 (ATF4) activation and subsequent expression of C/EBP homologous protein (CHOP), which was all independent of TNFα signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision-cut human liver slices. Targeted RNA interference studies revealed that whereas ER stress signaling through inositol-requiring enzyme 1α (IRE1α) and activating transcription factor 6 (ATF6) acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNFα-induced apoptosis. Whereas inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNFα cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNFα-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing toward caspase-8-dependent TNFα-induced apoptosis.


Subject(s)
Carbamazepine/toxicity , Chemical and Drug Induced Liver Injury/etiology , Diclofenac/toxicity , Oxidative Stress/drug effects , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Drug Synergism , Endoplasmic Reticulum Stress/drug effects , Gene Expression Profiling , Genome-Wide Association Study , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress/immunology , Transcriptome/drug effects , Tumor Necrosis Factor-alpha/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...