Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Phys ; 20(5): 815-821, 2024.
Article in English | MEDLINE | ID: mdl-38799981

ABSTRACT

Approaches to developing large-scale superconducting quantum processors must cope with the numerous microscopic degrees of freedom that are ubiquitous in solid-state devices. State-of-the-art superconducting qubits employ aluminium oxide (AlOx) tunnel Josephson junctions as the sources of nonlinearity necessary to perform quantum operations. Analyses of these junctions typically assume an idealized, purely sinusoidal current-phase relation. However, this relation is expected to hold only in the limit of vanishingly low-transparency channels in the AlOx barrier. Here we show that the standard current-phase relation fails to accurately describe the energy spectra of transmon artificial atoms across various samples and laboratories. Instead, a mesoscopic model of tunnelling through an inhomogeneous AlOx barrier predicts percent-level contributions from higher Josephson harmonics. By including these in the transmon Hamiltonian, we obtain orders of magnitude better agreement between the computed and measured energy spectra. The presence and impact of Josephson harmonics has important implications for developing AlOx-based quantum technologies including quantum computers and parametric amplifiers. As an example, we show that engineered Josephson harmonics can reduce the charge dispersion and associated errors in transmon qubits by an order of magnitude while preserving their anharmonicity.

2.
Proc Natl Acad Sci U S A ; 120(41): e2221736120, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37801473

ABSTRACT

The design of quantum hardware that reduces and mitigates errors is essential for practical quantum error correction (QEC) and useful quantum computation. To this end, we introduce the circuit-Quantum Electrodynamics (QED) dual-rail qubit in which our physical qubit is encoded in the single-photon subspace, [Formula: see text], of two superconducting microwave cavities. The dominant photon loss errors can be detected and converted into erasure errors, which are in general much easier to correct. In contrast to linear optics, a circuit-QED implementation of the dual-rail code offers unique capabilities. Using just one additional transmon ancilla per dual-rail qubit, we describe how to perform a gate-based set of universal operations that includes state preparation, logical readout, and parametrizable single and two-qubit gates. Moreover, first-order hardware errors in the cavities and the transmon can be detected and converted to erasure errors in all operations, leaving background Pauli errors that are orders of magnitude smaller. Hence, the dual-rail cavity qubit exhibits a favorable hierarchy of error rates and is expected to perform well below the relevant QEC thresholds with today's coherence times.

3.
Nat Mater ; 18(8): 816-819, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31036961

ABSTRACT

Superconducting quantum information processing machines are predominantly based on microwave circuits with relatively low characteristic impedance, about 100 Ω, and small anharmonicity, which can limit their coherence and logic gate fidelity1,2. A promising alternative is circuits based on so-called superinductors3-6, with characteristic impedances exceeding the resistance quantum RQ = 6.4 kΩ. However, previous implementations of superinductors, consisting of mesoscopic Josephson junction arrays7,8, can introduce unintended nonlinearity or parasitic resonant modes in the qubit vicinity, degrading its coherence. Here, we present a fluxonium qubit design based on a granular aluminium superinductor strip9-11. We show that granular aluminium can form an effective junction array with high kinetic inductance and be in situ integrated with standard aluminium circuit processing. The measured qubit coherence time [Formula: see text] illustrates the potential of granular aluminium for applications ranging from protected qubit designs to quantum-limited amplifiers and detectors.

4.
Nat Commun ; 5: 3400, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24594621

ABSTRACT

Non-trivial spin arrangements in magnetic materials give rise to the topological Hall effect observed in compounds with a non-centrosymmetric cubic structure hosting a skyrmion lattice, in double-exchange ferromagnets and magnetically frustrated systems. The topological Hall effect has been proposed to appear also in presence of non-coplanar spin configurations and thus might occur in an antiferromagnetic material with a highly non-collinear and non-coplanar spin structure. Particularly interesting is a material where the non-collinearity develops not immediately at the onset of antiferromagnetic order but deep in the antiferromagnetic phase. This unusual situation arises in non-cubic antiferromagnetic Mn5Si3. Here we show that a large topological Hall effect develops well below the Néel temperature as soon as the spin arrangement changes from collinear to non-collinear with decreasing temperature. We further demonstrate that the effect is not observed when the material is turned ferromagnetic by carbon doping without changing its crystal structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...