Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mutat Res ; 638(1-2): 162-74, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18022202

ABSTRACT

OBJECTIVE: Colorectal cancer incidence is greater among African Americans, compared to whites in the U.S., and may be due in part to differences in diet, genetic variation at metabolic loci, and/or the joint effect of diet and genetic susceptibility. We examined whether our previously reported associations between meat-derived heterocyclic amine (HCA) intake and colon cancer were modified by N-acetyltransferase 1 (NAT1) or 2 (NAT2) genotypes and whether there were differences by race. METHODS: In a population-based, case-control study of colon cancer, exposure to HCAs was assessed using a food-frequency questionnaire with a meat-cooking and doneness module, among African Americans (217 cases and 315 controls) and whites (290 cases and 534 controls). RESULTS: There was no association with NAT1*10 versus NAT1-non*10 genotypes for colon cancer. Among whites, there was a positive association for NAT2-"rapid/intermediate" genotype [odds ratio (OR)=1.4; 95% confidence interval (CI)=1.0, 1.8], compared to the NAT2-"slow" that was not observed among African Americans. Colon cancer associations with HCA intake were modified by NAT1, but not NAT2, regardless of race. However, the "at-risk" NAT1 genotype differed by race. For example, among African Americans, the positive association with 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) was confined to those with NAT1*10 genotype (OR=1.8; 95% CI=1.0, 3.3; P for interaction=0.02, comparing highest to lowest intake), but among whites, an association with 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was confined to those with NAT1-non*10 genotype (OR=1.9; 95% CI=1.1, 3.1; P for interaction=0.03). CONCLUSIONS: Our data indicate modification by NAT1 for HCA and colon cancer associations, regardless of race. Although the at-risk NAT1 genotype differs by race, the magnitude of the individual HCA-related associations in both race groups are similar. Therefore, our data do not support the hypothesis that NAT1 by HCA interactions contribute to differences in colorectal cancer incidence between African Americans and whites.


Subject(s)
Arylamine N-Acetyltransferase/genetics , Colonic Neoplasms/genetics , Diet , Heterocyclic Compounds , Isoenzymes/genetics , Meat , Racial Groups , Black or African American , Aged , Amines , Case-Control Studies , Gene Frequency , Genotype , Humans , Polymorphism, Genetic
2.
Cancer Res ; 66(5): 2860-8, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16510609

ABSTRACT

Tobacco smoke produces oxidative and alkylative DNA damage that necessitates repair by base excision repair coordinated by X-ray cross-complementing gene 1 (XRCC1). We investigated whether polymorphisms in XRCC1 alter DNA repair capacity and modify breast cancer risk associated with smoking. To show the functionality of the 280His variant, we evaluated single-strand break (SSB) repair capacity of isogenic Chinese hamster ovary cells expressing human forms of XRCC1 after exposure to hydrogen peroxide (H(2)O(2)), methyl methanesulfonate (MMS), or camptothecin by monitoring NAD(P)H. We used data from the Carolina Breast Cancer Study (CBCS), a population-based, case-control study that included 2,077 cases (786 African Americans and 1,281 Whites) and 1,818 controls (681 African Americans and 1,137 Whites), to examine associations among XRCC1 codon 194, 280, and 399 genotypes, breast cancer, and smoking. Odds ratios and 95% confidence intervals (95% CI) were calculated by unconditional logistic regression. Only cells expressing the 280His protein accumulated SSB, indicated by NAD(P)H depletion, from both H(2)O(2) and MMS exposures. In the CBCS, positive associations were observed between breast cancer and smoking dose for participants with XRCC1 codon 194 Arg/Arg (P(trend) = 0.046), 399 Arg/Arg (P(trend) = 0.012), and 280 His/His or His/Arg (P(trend) = 0.047) genotypes. The 280His allele was in strong linkage disequilibrium with 194Arg (Lewontin's D' = 1.0) and 399Arg (D' = 1.0). These data suggest that less common, functional polymorphisms may lie within common haplotypes and drive gene-environment interactions.


Subject(s)
Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Smoking/genetics , Aged , Breast Neoplasms/epidemiology , Case-Control Studies , Codon , DNA Repair , Female , Genotype , Humans , Male , North Carolina/epidemiology , Polymorphism, Genetic , Smoking/epidemiology , X-ray Repair Cross Complementing Protein 1
3.
Carcinogenesis ; 27(7): 1377-85, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16399771

ABSTRACT

Polymorphisms exist in several genes involved in nucleotide excision repair (NER), the principal pathway for removal of smoking-induced DNA damage. An epidemiologic study was conducted to determine whether these polymorphisms modify the association between smoking and breast cancer. DNA samples and exposure histories were analyzed as part of a large population-based case-control study of breast cancer in North Carolina. The study population included 2311 cases (894 African Americans, 1417 whites) and 2022 controls (788 African Americans, 1234 whites). Odds ratios (ORs) were calculated for breast cancer and smoking, and for breast cancer and nine non-synonymous coding polymorphisms in six NER genes (XPD codons 312 and 751, RAD23B codon 249, XPG codon 1104, XPC codon 939, XPF codons 415 and 662, and ERCC6 codons 1213 and 1230). Modification of ORs for smoking by single and combined NER genotypes was investigated. In this study population, smoking was more strongly associated with breast cancer in African American women compared with white women. Among African American women, the association of breast cancer and smoking was strongest among women with specific combinations of NER genotypes. Evidence for multiplicative interaction was found between combined NER genotypes and smoking dose (likelihood ratio test P = 0.06), duration (P = 0.09), time since cessation (P = 0.02), age at initiation (P = 0.04) and former smoking (P = 0.03). No interactions were observed in white women. Therefore, polymorphisms in NER genes may modify the relationship between breast cancer and smoking. These results are consistent with previous evidence of exposure-specific p53 mutations in breast tumors from current and former smokers, suggesting that smoking may play a role in breast cancer etiology.


Subject(s)
Black or African American/genetics , Breast Neoplasms/etiology , DNA Repair/genetics , Smoking/adverse effects , White People/genetics , Adult , Aged , Breast Neoplasms/ethnology , Breast Neoplasms/genetics , Case-Control Studies , Female , Genetic Predisposition to Disease , Genotype , Humans , Middle Aged , Odds Ratio , Polymerase Chain Reaction , Polymorphism, Genetic
5.
Carcinogenesis ; 27(3): 610-8, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16258177

ABSTRACT

Polymorphisms in six genes involved in nucleotide excision repair of DNA were examined in a large population-based case-control study of melanoma. Genotyping was conducted for 2485 patients with a single primary melanoma (controls) and 1238 patients with second or higher order primary melanomas (cases). Patients were ascertained from nine geographic regions in Australia, Canada, Italy and the United States. Positive associations were observed for XPD 312 Asn/Asn versus Asp/Asp [odds ratio (OR) = 1.5, 95% confidence interval (CI) 1.2-1.9] and XPD 751 Gln/Gln versus Lys/Lys (OR = 1.4, 95% CI 1.1-1.7) genotypes and melanoma. The combined XPD Asn (A) 312 + Gln (C) 751 haplotype was significantly more frequent in cases (32%) compared with controls (29%) (P = 0.003) and risk of melanoma increased significantly with one and two copies of the haplotype (ORs 1.2, 95% CI 1.0-1.4, and 1.6, 95% CI 1.2-2.0, trend P = 0.002). No significant associations were observed for HR23B codon 249, XPG codon 1104, XPC codon 939, XPF codon 415, XPF nt 2063, ERCC6 codon 1213 or ERCC6 codon 1230. ORs for XPD and XPC genotypes were stronger for melanoma diagnosed at an early age, but tests for interaction were not statistically significant. The results provide further evidence for a role of XPD in the etiology of melanoma.


Subject(s)
DNA Repair , Melanoma/genetics , Polymorphism, Genetic , Skin Neoplasms/genetics , Xeroderma Pigmentosum Group D Protein/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Female , Genotype , Humans , Male , Melanoma/etiology , Middle Aged , Odds Ratio , Risk Factors , Skin Neoplasms/etiology
6.
Cancer Epidemiol Biomarkers Prev ; 11(12): 1611-21, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12496052

ABSTRACT

We evaluated polymorphisms in methylenetetrahydrofolate reductase (MTHFR), folate intake and alcohol consumption in relation to risk of colon cancer in a population-based case-control study in North Carolina. The study included 555 cases (244 African Americans and 311 whites) and 875 controls (331 African Americans and 544 whites). Total folate intake of <400 versus > or =400 microg/day showed a weak positive association with colon cancer among both African Americans [adjusted odds ratio (OR) = 1.4, 95% confidence interval (CI) = 1.0-2.0] and whites (OR = 1.6, 95% CI = 1.2-2.2). No association was observed with use of alcohol. Compared with wild-type genotypes, there was no association between the low activity MTHFR codon 677 TT genotype and colon cancer, but the low activity codon 1298 CC genotype was inversely associated with colon cancer in whites (OR = 0.5, 95% CI = 0.3-0.9). Unlike previous studies, we did not observe a strong protective effect of the codon 677 TT low-activity genotype when folate intake was high. Instead, we observed an increased risk of colon cancer when folate intake was low for participants with wild- type genotypes. Adjusted ORs for the combined effects of codon 677 CC and codon 1298 AA genotypes and folate intake <400 microg/day were 1.9 (95% CI = 1.1-3.4) in African Americans and 2.5 (95% CI = 1.2-5.2) in whites. Our results suggest that variation at MTHFR codon 1298 (within the COOH-terminal region) may be more important for colon cancer than variation at codon 677 (NH(2)-terminal region), and in populations where folate intake is low, wild-type MTHFR activity may increase risk for colon cancer.


Subject(s)
Alcohol Drinking/adverse effects , Black People/genetics , Colonic Neoplasms/ethnology , Colonic Neoplasms/genetics , Genetic Predisposition to Disease , Oxidoreductases Acting on CH-NH Group Donors/genetics , Polymorphism, Genetic , White People/genetics , Adult , Age Distribution , Aged , Alleles , Case-Control Studies , Codon , Confidence Intervals , Female , Gene Frequency , Genetic Markers , Genotype , Humans , Incidence , Male , Methylenetetrahydrofolate Reductase (NADPH2) , Middle Aged , Odds Ratio , Polymorphism, Restriction Fragment Length , Reference Values , Risk Assessment , Sex Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...