Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Clin Cancer Res ; 27(7): 1997-2010, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33199492

ABSTRACT

PURPOSE: Nucleotide excision repair (NER) gene alterations constitute potential cancer therapeutic targets. We explored the prevalence of NER gene alterations across cancers and putative therapeutic strategies targeting these vulnerabilities. EXPERIMENTAL DESIGN: We interrogated our institutional dataset with mutational data from more than 40,000 patients with cancer to assess the frequency of putative deleterious alterations in four key NER genes. Gene-edited isogenic pairs of wild-type and mutant ERCC2 or ERCC3 cell lines were created and used to assess response to several candidate drugs. RESULTS: We found that putative damaging germline and somatic alterations in NER genes were present with frequencies up to 10% across multiple cancer types. Both in vitro and in vivo studies showed significantly enhanced sensitivity to the sesquiterpene irofulven in cells harboring specific clinically observed heterozygous mutations in ERCC2 or ERCC3. Sensitivity of NER mutants to irofulven was greater than to a current standard-of-care agent, cisplatin. Hypomorphic ERCC2/3-mutant cells had impaired ability to repair irofulven-induced DNA damage. Transcriptomic profiling of tumor tissues suggested codependencies between DNA repair pathways, indicating a potential benefit of combination therapies, which were confirmed by in vitro studies. CONCLUSIONS: These findings provide novel insights into a synthetic lethal relationship between clinically observed NER gene deficiencies and sensitivity to irofulven and its potential synergistic combination with other drugs.See related commentary by Jiang and Greenberg, p. 1833.


Subject(s)
DNA Repair , Neoplasms , Cisplatin/pharmacology , DNA Damage , DNA Repair/genetics , Germ Cells , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Xeroderma Pigmentosum Group D Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...