Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(23): 237701, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33337212

ABSTRACT

We demonstrate gate control of electronic heat flow in a thermally biased single-quantum-dot junction. Electron temperature maps taken in the immediate vicinity of the junction, as a function of the gate and bias voltages applied to the device, reveal clearly defined Coulomb diamond patterns that indicate a maximum heat transfer at the charge degeneracy point. The nontrivial bias and gate dependence of this heat valve results from the quantum nature of the dot at the heart of device and its strong coupling to leads.

2.
Phys Rev Lett ; 119(7): 077701, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949696

ABSTRACT

We report on combined measurements of heat and charge transport through a single-electron transistor. The device acts as a heat switch actuated by the voltage applied on the gate. The Wiedemann-Franz law for the ratio of heat and charge conductances is found to be systematically violated away from the charge degeneracy points. The observed deviation agrees well with the theoretical expectation. With a large temperature drop between the source and drain, the heat current away from degeneracy deviates from the standard quadratic dependence in the two temperatures.

3.
Phys Rev Lett ; 116(16): 166801, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152817

ABSTRACT

We report on the realization of a single-electron source, where current is transported through a single-level quantum dot (Q) tunnel coupled to two superconducting leads (S). When driven with an ac gate voltage, the experiment demonstrates electron turnstile operation. Compared to the more conventional superconductor-normal-metal-superconductor turnstile, our superconductor-quantum-dot-superconductor device presents a number of novel properties, including higher immunity to the unavoidable presence of nonequilibrium quasiparticles in superconducting leads. Moreover, we demonstrate its ability to deliver electrons with a very narrow energy distribution.

4.
Phys Rev Lett ; 116(12): 126804, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-27058092

ABSTRACT

The charge carrier density in graphene on a dielectric substrate such as SiO_{2} displays inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles are predicted to grow near charge neutrality, a markedly distinct property from conventional two-dimensional electron gases. By performing scanning tunneling microscopy and spectroscopy on a mesoscopic graphene device, we directly observe the puddles' growth, both in spatial extent and in amplitude, as the Fermi level approaches the Dirac point. Self-consistent screening theory provides a unified description of both the macroscopic transport properties and the microscopically observed charge disorder.

5.
Phys Rev Lett ; 114(15): 157003, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25933333

ABSTRACT

We demonstrate the role of the proximity effect in the thermal hysteresis of superconducting constrictions. From the analysis of successive thermal instabilities in the transport characteristics of micron-size superconducting quantum interference devices with a well-controlled geometry, we obtain a complete picture of the different thermal regimes. These determine whether or not the junctions are hysteretic. Below the superconductor critical temperature, the critical current switches from a classical weak-link behavior to one driven by the proximity effect. The associated small amplitude of the critical current makes it robust with respect to the heat generation by phase slips, leading to a nonhysteretic behavior.

6.
Nanotechnology ; 24(37): 375304, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23974037

ABSTRACT

We report a novel method for the fabrication of superconducting nano-devices based on niobium. The well-known difficulties of lithographic patterning of high-quality niobium are overcome by replacing the usual organic resist mask by a metallic one. The quality of the fabrication procedure is demonstrated by the realization and characterization of long and narrow superconducting lines and niobium-gold-niobium proximity SQUIDs.

7.
Rev Sci Instrum ; 83(12): 123702, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23277991

ABSTRACT

We present a combined scanning force and tunneling microscope working in a dilution refrigerator that is optimized for the study of individual electronic nano-devices. This apparatus is equipped with commercial piezo-electric positioners enabling the displacement of a sample below the probe over several hundred microns at very low temperature, without excessive heating. Atomic force microscopy based on a tuning fork resonator probe is used for cryogenic precise alignment of the tip with an individual device. We demonstrate the local tunneling spectroscopy of a hybrid Josephson junction as a function of its current bias.

8.
Phys Rev Lett ; 96(20): 205301, 2006 May 26.
Article in English | MEDLINE | ID: mdl-16803180

ABSTRACT

We report on the observation of an anomalously high damping measured by a vibrating-wire resonator (VWR) immersed into superfluid at ultralow temperatures. The observed dissipation is orders of magnitude above that corresponding to friction with the dilute normal fraction and superfluid vortices. A clear pinning behavior is also observed, as well as a strong magnetic field dependence. Our analysis points to the interaction of the VWR with a planar topological defect, analogue to cosmological vacua defects, as proposed by Salomaa and Volovik.

SELECTION OF CITATIONS
SEARCH DETAIL
...