Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(5): 057001, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364128

ABSTRACT

We study the interplay between Coulomb blockade and superconductivity in a tunable superconductor-superconductor-normal-metal single-electron transistor. The device is realized by connecting the superconducting island via an oxide barrier to the normal-metal lead and with a break junction to the superconducting lead. The latter enables Cooper pair transport and (multiple) Andreev reflection. We show that these processes are relevant also far above the superconducting gap and that signatures of Coulomb blockade may reoccur at high bias while they are absent for small bias in the strong-coupling regime. Our experimental findings agree with simulations using a rate equation approach in combination with the full counting statistics of multiple Andreev reflection.

2.
Nature ; 615(7953): 628-633, 2023 03.
Article in English | MEDLINE | ID: mdl-36890238

ABSTRACT

Current flow in electronic devices can be asymmetric with bias direction, a phenomenon underlying the utility of diodes1 and known as non-reciprocal charge transport2. The promise of dissipationless electronics has recently stimulated the quest for superconducting diodes, and non-reciprocal superconducting devices have been realized in various non-centrosymmetric systems3-10. Here we investigate the ultimate limits of miniaturization by creating atomic-scale Pb-Pb Josephson junctions in a scanning tunnelling microscope. Pristine junctions stabilized by a single Pb atom exhibit hysteretic behaviour, confirming the high quality of the junctions, but no asymmetry between the bias directions. Non-reciprocal supercurrents emerge when inserting a single magnetic atom into the junction, with the preferred direction depending on the atomic species. Aided by theoretical modelling, we trace the non-reciprocity to quasiparticle currents flowing by means of electron-hole asymmetric Yu-Shiba-Rusinov states inside the superconducting energy gap and identify a new mechanism for diode behaviour in Josephson junctions. Our results open new avenues for creating atomic-scale Josephson diodes and tuning their properties through single-atom manipulation.

3.
Nat Commun ; 13(1): 7814, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36535919

ABSTRACT

Graphene's original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide substrate (epigraphene) are stabilized by the substrate and support a protected edge state. The edge state has a mean free path that is greater than 50 microns, 5000 times greater than the bulk states and involves a theoretically unexpected Majorana-like zero-energy non-degenerate quasiparticle that does not produce a Hall voltage. In seamless integrated structures, the edge state forms a zero-energy one-dimensional ballistic network with essentially dissipationless nodes at ribbon-ribbon junctions. Seamless device structures offer a variety of switching possibilities including quantum coherent devices at low temperatures. This makes epigraphene a technologically viable graphene nanoelectronics platform that has the potential to succeed silicon nanoelectronics.

4.
Nature ; 605(7908): 51-56, 2022 05.
Article in English | MEDLINE | ID: mdl-35508777

ABSTRACT

ABSTARCT: When electrons populate a flat band their kinetic energy becomes negligible, forcing them to organize in exotic many-body states to minimize their Coulomb energy1-5. The zeroth Landau level of graphene under a magnetic field is a particularly interesting strongly interacting flat band because interelectron interactions are predicted to induce a rich variety of broken-symmetry states with distinct topological and lattice-scale orders6-11. Evidence for these states stems mostly from indirect transport experiments that suggest that broken-symmetry states are tunable by boosting the Zeeman energy12 or by dielectric screening of the Coulomb interaction13. However, confirming the existence of these ground states requires a direct visualization of their lattice-scale orders14. Here we image three distinct broken-symmetry phases in graphene using scanning tunnelling spectroscopy. We explore the phase diagram by tuning the screening of the Coulomb interaction by a low- or high-dielectric-constant environment, and with a magnetic field. In the unscreened case, we find a Kekulé bond order, consistent with observations of an insulating state undergoing a magnetic-field driven Kosterlitz-Thouless transition15,16. Under dielectric screening, a sublattice-unpolarized ground state13 emerges at low magnetic fields, and transits to a charge-density-wave order with partial sublattice polarization at higher magnetic fields. The Kekulé and charge-density-wave orders furthermore coexist with additional, secondary lattice-scale orders that enrich the phase diagram beyond current theory predictions6-10. This screening-induced tunability of broken-symmetry orders may prove valuable to uncover correlated phases of matter in other quantum materials.

5.
Nanoscale ; 14(14): 5425-5429, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35322834

ABSTRACT

In a multi-branch metallic interconnect we demonstrate the possibility to induce targeted modifications of the material properties by properly selecting the intensity and polarity of the applied current. We illustrate this effect in Y-shape multiterminal devices made of Nb on sapphire for which we show that the superconducting critical current can be lowered in a controlled manner at a preselected junction. We further observe the gradual appearance of Fraunhofer-like critical current oscillations with magnetic field which indicates the gradual modification of a superconducting weak link. This method permits progressive modifications of a hand-picked junction without affecting the neighboring terminals. The proposed approach has the benefit of being inexpensive and requiring conventional electronics. This technique represents a major step toward all-electric control of multiterminal Josephson junctions.

6.
Nano Lett ; 22(2): 630-635, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35030004

ABSTRACT

The Wiedemann-Franz law states that the charge conductance and the electronic contribution to the heat conductance are proportional. This sets stringent constraints on efficiency bounds for thermoelectric applications, which seek a large charge conduction in response to a small heat flow. We present experiments based on a quantum dot formed inside a semiconducting InAs nanowire transistor, in which the heat conduction can be tuned significantly below the Wiedemann-Franz prediction. Comparison with scattering theory shows that this is caused by quantum confinement and the resulting energy-selective transport properties of the quantum dot. Our results open up perspectives for tailoring independently the heat and electrical conduction properties in semiconductor nanostructures.

7.
Nano Lett ; 20(5): 3786-3790, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32271586

ABSTRACT

The recent observation of non-classical electron transport regimes in two-dimensional materials has called for new high-resolution non-invasive techniques to locally probe electronic properties. We introduce a novel hybrid scanning probe technique to map the local resistance and electrochemical potential with nm- and µV resolution, and we apply it to study epigraphene nanoribbons grown on the sidewalls of SiC substrate steps. Remarkably, the potential drop is non-uniform along the ribbons, and µm-long segments show no potential variation with distance. The potential maps are in excellent agreement with measurements of the local resistance. This reveals ballistic transport, compatible with µm-long room-temperature electronic mean-free paths.

8.
Nano Lett ; 19(1): 506-511, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30566839

ABSTRACT

We report on the first measurement of the Seebeck coefficient in a tunnel-contacted and gate-tunable individual single-quantum dot junction in the Kondo regime, fabricated using the electromigration technique. This fundamental thermoelectric parameter is obtained by directly monitoring the magnitude of the voltage induced in response to a temperature difference across the junction, while keeping a zero net tunneling current through the device. In contrast to bulk materials and single molecules probed in a scanning tunneling microscopy (STM) configuration, investigating the thermopower in nanoscale electronic transistors benefits from the electric tunability to showcase prominent quantum effects. Here, striking sign changes of the Seebeck coefficient are induced by varying the temperature, depending on the spin configuration in the quantum dot. The comparison with numerical renormalization group (NRG) calculations demonstrates that the tunneling density of states is generically asymmetric around the Fermi level in the leads, both in the cotunneling and Kondo regimes.

9.
Nanoscale ; 8(33): 15162-6, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27503569

ABSTRACT

If surface effects are neglected, any change of the Fermi level in a semiconductor is expected to result in an equal and opposite change of the work function. However, this is in general not observed in three-dimensional semiconductors, because of Fermi level pinning at the surface. By combining Kelvin probe force microscopy and scanning tunneling spectroscopy on single layer graphene, we measure both the local work function and the charge carrier density. The one-to-one equivalence of changes in the Fermi level and the work function is demonstrated to accurately hold in single layer graphene down to the nanometer scale.

10.
Nano Lett ; 7(6): 1454-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17497816

ABSTRACT

We study porphyrin derivative coated silicon nanowire field effect transistors (SiNW-FETs), which display a large, stable, and reproducible conductance increase upon illumination. The efficiency and the kinetics of the optical switching are studied as a function of gate voltage, illumination wavelength, and temperature. The decay kinetics from the high- to the low-conductance state is governed by charge recombination via tunneling, with a rate depending on the state of the SiNW-FET. The comparison to porphyrin-sensitized carbon nanotube FETs allows the environment- and molecule-dependent photoconversion process to be distinguished from the charge-to-current transducing effect of the semiconducting channel.


Subject(s)
Nanotubes/chemistry , Nanotubes/ultrastructure , Optics and Photonics/instrumentation , Porphyrins/chemistry , Signal Processing, Computer-Assisted/instrumentation , Silicon/chemistry , Transistors, Electronic , Crystallization/methods , Electrochemistry/instrumentation , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...