Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21267628

ABSTRACT

Several Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) neutralising monoclonal antibodies (mAbs) have received emergency use authorisation by regulatory agencies for treatment and prevention of Coronavirus Disease 2019 (COVID-19), including in patients at risk for progression to severe disease. Here we report the persistence of viable SARS-CoV-2 in patients treated with sotrovimab and the rapid development of spike gene mutations that have been shown to confer high level resistance to sotrovimab in vitro. We highlight the need for SARS-CoV-2 genomic surveillance in at risk individuals to inform stewardship of mAbs use and prevent potential treatment failures.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-472252

ABSTRACT

In late November 2021, the World Health Organization declared the SARS-CoV-2 lineage B.1.1.529 the fifth variant of concern, Omicron. This variant has acquired 15 mutations in the receptor binding domain of the spike protein, raising concerns that Omicron could evade naturally acquired and vaccine-derived immunity. We utilized an authentic virus, multicycle neutralisation assay to demonstrate that sera collected one, three and six months post-two doses of Pfizer-BioNTech BNT162b2 has a limited ability to neutralise SARS-CoV-2. However, four weeks after a third dose, neutralising antibody titres are boosted. Despite this increase, neutralising antibody titres are reduced four-fold for Omicron compared to lineage A.2.2 SARS-CoV-2.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21266789

ABSTRACT

BackgroundLow frequency intrahost single nucleotide variants (iSNVs) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been increasingly recognised as predictive indicators of positive selection. Particularly as growing numbers of SARS-CoV-2 variants of interest (VOI) and concern (VOC) emerge. However, the dynamics of subgenomic RNA (sgRNA) expression and its impact on genomic diversity and infection outcome remain poorly understood. This study aims to investigate and quantify iSNVs and sgRNA expression in single and longitudinally sampled cohorts over the course of mild and severe SARS-CoV-2 infection benchmarked against an in-vitro infection model. MethodsTwo clinical cohorts of SARS-CoV-2 positive cases in New South Wales, Australia collected between March 2020 and August 2021 were sequenced. Longitudinal samples from cases hospitalised due to SARS-CoV-2 infection (severe) were analysed and compared with cases that presented with SARS-CoV-2 symptoms but were not hospitalised (mild). SARS-CoV-2 genomic diversity profiles were also examined from daily sampling of culture experiments for three SARS-CoV-2 variants (Lineage A, B.1.351, and B.1.617.2) cultured in VeroE6 C1008 cells (n = 33). ResultsISNVs were detected in 83% (19/23) of the mild cohort cases and 100% (16/16) of the severe cohort cases. SNP profiles remained relatively fixed over time, with an average of 1.66 SNPs gained or lost and an average of 4.2 and 5.9 low frequency variants per patient were detected in severe and mild infection, respectively. SgRNA was detected in 100% (25/25) of the mild genomes and 92% (24/26) of the severe genomes. Total sgRNA expressed across all genes in the mild cohort was significantly higher than that of the severe cohort. Significantly higher expression levels were detected in the spike and the nucleocapsid genes. There was significantly less sgRNA detected in the culture cohort than the clinical. Discussion and ConclusionsThe positions and frequencies of iSNVs in the severe and mild infection cohorts were dynamic overtime, highlighting the importance of continual monitoring, particularly during community outbreaks where multiple SARS-Cov-2 variants may co-circulate. SgRNA levels can vary across patients and the overall level of sgRNA reads compared to genomic RNA can be less than 1%. The relative contribution of sgRNA to the severity of illness warrants further investigation given the level of variation between genomes. Further monitoring of sgRNAs will improve the understanding of SARS-CoV-2 evolution and the effectiveness of therapeutic and public health containment measures during the pandemic.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-442304

ABSTRACT

SARS-CoV-2 genomic surveillance has been vital in understanding the spread of COVID-19, the emergence of viral escape mutants and variants of concern. However, low viral loads in clinical specimens affect variant calling for phylogenetic analyses and detection of low frequency variants, important in uncovering infection transmission chains. We systematically evaluated three widely adopted SARS-CoV-2 whole genome sequencing methods for their sensitivity, specificity, and ability to reliably detect low frequency variants. Our analyses highlight that the ARTIC v3 protocol consistently displays high sensitivity for generating complete genomes at low viral loads compared with the probe-based Illumina respiratory viral oligo panel, and a pooled long-amplicon method. We show substantial variability in the number and location of low-frequency variants detected using the three methods, highlighting the importance of selecting appropriate methods to obtain high quality sequence data from low viral load samples for public health and genomic surveillance purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...