Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Structure ; 30(4): 551-563.e4, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35150605

ABSTRACT

Encapsulins are bacterial organelle-like cages involved in various aspects of metabolism, especially protection from oxidative stress. They can serve as vehicles for a wide range of medical applications. Encapsulin shell proteins are structurally similar to HK97 bacteriophage capsid protein and their function depends on the encapsulated cargos. The Myxococcus xanthus encapsulin system comprises EncA and three cargos: EncB, EncC, and EncD. EncB and EncC are similar to bacterial ferritins that can oxidize Fe+2 to less toxic Fe+3. We analyzed EncA, EncB, and EncC by cryo-EM and X-ray crystallography. Cryo-EM shows that EncA cages can have T = 3 and T = 1 symmetry and that EncA T = 1 has a unique protomer arrangement. Also, we define EncB and EncC binding sites on EncA. X-ray crystallography of EncB and EncC reveals conformational changes at the ferroxidase center and additional metal binding sites, suggesting a mechanism for Fe oxidation and storage within the encapsulin shell.


Subject(s)
Myxococcus xanthus , Bacterial Proteins/chemistry , Crystallography, X-Ray , Ferritins/chemistry , Iron/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism
2.
Appl Environ Microbiol ; 88(5): e0155321, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35020453

ABSTRACT

In previous publications, it was hypothesized that Micrarchaeota cells are covered by two individual membrane systems. This study proves that at least the recently cultivated "Candidatus Micrarchaeum harzensis A_DKE" possesses an S-layer covering its cytoplasmic membrane. The potential S-layer protein was found to be among the proteins with the highest abundance in "Ca. Micrarchaeum harzensis A_DKE," and in silico characterization of its primary structure indicated homologies to other known S-layer proteins. Homologues of this protein were found in other Micrarchaeota genomes, which raises the question of whether the ability to form an S-layer is a common trait within this phylum. The S-layer protein seems to be glycosylated, and the micrarchaeon expresses genes for N-glycosylation under cultivation conditions, despite not being able to synthesize carbohydrates. Electron micrographs of freeze-etched samples of a previously described coculture, containing "Ca. Micrarchaeum harzensis A_DKE" and a Thermoplasmatales member as its host organism, verified the hypothesis of an S-layer on the surface of "Ca. Micrarchaeum harzensis A_DKE." Both organisms are clearly distinguishable by cell size, shape, and surface structure. IMPORTANCE Our knowledge about the DPANN superphylum, which comprises several archaeal phyla with limited metabolic capacities, is mostly based on genomic data derived from cultivation-independent approaches. This study examined the surface structure of a recently cultivated member "Candidatus Micrarchaeum harzensis A_DKE," an archaeal symbiont dependent on an interaction with a host organism for growth. The interaction requires direct cell contact between interaction partners, a mechanism which is also described for other DPANN archaea. Investigating the surface structure of "Ca. Micrarchaeum harzensis A_DKE" is an important step toward understanding the interaction between Micrarchaeota and their host organisms and living with limited metabolic capabilities, a trait shared by several DPANN archaea.


Subject(s)
Archaea , Genome, Archaeal , Archaea/metabolism , Genomics , Phylogeny
3.
Microorganisms ; 9(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34835444

ABSTRACT

Despite several discoveries in recent years, the physiology of acidophilic Micrarchaeota, such as "Candidatus Micrarchaeum harzensis A_DKE", remains largely enigmatic, as they highly express numerous genes encoding hypothetical proteins. Due to a lacking genetic system, it is difficult to elucidate the biological function of the corresponding proteins and heterologous expression is required. In order to prove the viability of this approach, A_DKE's isocitrate dehydrogenase (MhIDH) was recombinantly produced in Escherichia coli and purified to electrophoretic homogeneity for biochemical characterization. MhIDH showed optimal activity around pH 8 and appeared to be specific for NADP+ yet promiscuous regarding divalent cations as cofactors. Kinetic studies showed KM-values of 53.03 ± 5.63 µM and 1.94 ± 0.12 mM and kcat-values of 38.48 ± 1.62 and 43.99 ± 1.46 s-1 resulting in kcat/KM-values of 725 ± 107.62 and 22.69 ± 2.15 mM-1 s-1 for DL-isocitrate and NADP+, respectively. MhIDH's exceptionally low affinity for NADP+, potentially limiting its reaction rate, can likely be attributed to the presence of a proline residue in the NADP+ binding pocket, which might cause a decrease in hydrogen bonding of the cofactor and a distortion of local secondary structure.

4.
mBio ; 12(2)2021 03 16.
Article in English | MEDLINE | ID: mdl-33727359

ABSTRACT

Herpes simplex virus 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography (cryoET). We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal-scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates outward further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid.IMPORTANCE Herpes simplex virus 1 (HSV-1) infects a majority of humans, causing mostly mild disease but in some cases progressing toward life-threatening encephalitis. Understanding the life cycle of the virus is important to devise countermeasures. Production of the virion starts with the assembly of an icosahedral procapsid, which includes DNA packaging proteins at a vertex, one of which is the dodecameric portal protein. The procapsid then undergoes maturation and DNA packaging through the portal, driven by a terminase complex. We used cryo-electron tomography to visualize the portal in procapsids and compare them to mature empty capsids. We found the portal located inside one vertex interacting with the scaffold protein in the procapsid. On maturation, the scaffold is cleaved and dissociates, the capsid angularizes, and the portal moves outward, interacting closely with the capsid shell. These transformations may provide a basis for the development of drugs to prevent HSV-1 infections.


Subject(s)
Capsid/metabolism , Capsid/ultrastructure , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Herpesvirus 1, Human/ultrastructure , Viral Proteins/metabolism , Virus Assembly , Capsid Proteins/genetics , Herpesvirus 1, Human/metabolism
5.
Viruses ; 12(9)2020 08 19.
Article in English | MEDLINE | ID: mdl-32825132

ABSTRACT

"Giant" phages have genomes of >200 kbp, confined in correspondingly large capsids whose assembly and maturation are still poorly understood. Nevertheless, the first assembly product is likely to be, as in other tailed phages, a procapsid that subsequently matures and packages the DNA. The associated transformations include the cleavage of many proteins by the phage-encoded protease, as well as the thinning and angularization of the capsid. We exploited an amber mutation in the viral protease gene of the Salmonella giant phage SPN3US, which leads to the accumulation of a population of capsids with distinctive properties. Cryo-electron micrographs reveal patterns of internal density different from those of the DNA-filled heads of virions, leading us to call them "mottled capsids". Reconstructions show an outer shell with T = 27 symmetry, an embellishment of the HK97 prototype composed of the major capsid protein, gp75, which is similar to some other giant viruses. The mottled capsid has a T = 1 inner icosahedral shell that is a complex network of loosely connected densities composed mainly of the ejection proteins gp53 and gp54. Segmentation of this inner shell indicated that a number of densities (~12 per asymmetric unit) adopt a "twisted hook" conformation. Large patches of a proteinaceous tetragonal lattice with a 67 Å repeat were also present in the cell lysate. The unexpected nature of these novel inner shell and lattice structures poses questions as to their functions in virion assembly.


Subject(s)
Capsid/metabolism , Giant Viruses/physiology , Salmonella Phages/physiology , Virus Assembly , Capsid/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , DNA Packaging , Genome, Viral , Giant Viruses/genetics , Giant Viruses/ultrastructure , Salmonella/virology , Salmonella Phages/genetics , Salmonella Phages/ultrastructure , Virion/genetics , Virion/physiology , Virion/ultrastructure
6.
Proc Natl Acad Sci U S A ; 116(9): 3556-3561, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30737287

ABSTRACT

Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit ß-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.


Subject(s)
Bacteriophages/ultrastructure , Capsid/ultrastructure , DNA Packaging/genetics , DNA Viruses/ultrastructure , Bacteriophages/genetics , Cryoelectron Microscopy , DNA Viruses/genetics , DNA, Viral/genetics , DNA, Viral/ultrastructure , Virion/genetics , Virion/ultrastructure , Virus Assembly/genetics
7.
mBio ; 9(5)2018 10 16.
Article in English | MEDLINE | ID: mdl-30327442

ABSTRACT

Late in the HIV-1 replication cycle, the viral structural protein Gag is targeted to virus assembly sites at the plasma membrane of infected cells. The capsid (CA) domain of Gag plays a critical role in the formation of the hexameric Gag lattice in the immature virion, and, during particle release, CA is cleaved from the Gag precursor by the viral protease and forms the conical core of the mature virion. A highly conserved Pro-Pro-Ile-Pro (PPIP) motif (CA residues 122 to 125) [PPIP(122-125)] in a loop connecting CA helices 6 and 7 resides at a 3-fold axis formed by neighboring hexamers in the immature Gag lattice. In this study, we characterized the role of this PPIP(122-125) loop in HIV-1 assembly and maturation. While mutations P123A and P125A were relatively well tolerated, mutation of P122 and I124 significantly impaired virus release, caused Gag processing defects, and abolished infectivity. X-ray crystallography indicated that the P122A and I124A mutations induce subtle changes in the structure of the mature CA lattice which were permissive for in vitro assembly of CA tubes. Transmission electron microscopy and cryo-electron tomography demonstrated that the P122A and I124A mutations induce severe structural defects in the immature Gag lattice and abrogate conical core formation. Propagation of the P122A and I124A mutants in T-cell lines led to the selection of compensatory mutations within CA. Our findings demonstrate that the CA PPIP(122-125) loop comprises a structural element critical for the formation of the immature Gag lattice.IMPORTANCE Capsid (CA) plays multiple roles in the HIV-1 replication cycle. CA-CA domain interactions are responsible for multimerization of the Gag polyprotein at virus assembly sites, and in the mature virion, CA monomers assemble into a conical core that encapsidates the viral RNA genome. Multiple CA regions that contribute to the assembly and release of HIV-1 particles have been mapped and investigated. Here, we identified and characterized a Pro-rich loop in CA that is important for the formation of the immature Gag lattice. Changes in this region disrupt viral production and abrogate the formation of infectious, mature virions. Propagation of the mutants in culture led to the selection of second-site compensatory mutations within CA. These results expand our knowledge of the assembly and maturation steps in the viral replication cycle and may be relevant for development of antiviral drugs targeting CA.


Subject(s)
Capsid Proteins/chemistry , HIV-1/chemistry , Protein Domains , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Motifs , Capsid Proteins/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Electron Microscope Tomography , HEK293 Cells , HIV-1/genetics , HeLa Cells , Humans , Models, Molecular , Mutation , Protein Structure, Secondary , T-Lymphocytes/virology , gag Gene Products, Human Immunodeficiency Virus/genetics
8.
Injury ; 49(2): 208-212, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29153449

ABSTRACT

AIMS: To investigate the changing epidemiology of open fractures in vehicle occupants, pedestrians, motorcyclists and cyclists. MATERIALS AND METHODS: Data on all non-spinal open fractures admitted to the Royal Infirmary of Edinburgh after a road traffic accident between 1988 and 2010 were collected and analysed to provide information about the changing epidemiology in different patient groups. Demographic information was collected on all patients with the severity of injury being analysed with the Injury Severity Score (ISS), Musculoskeletal Index (MSI) and the number of open fractures. The severity of the open fractures was analysed using the Gustilo classification. The 23-year study period was divided into four shorter periods and the results were compared. RESULTS: There were 696 patients treated in 23 years. Analysis showed that the incidence of RTA open fractures initially fell in both males and females and continued to fall in females during the 23 years. In males it levelled off about 2000. The age of the female patients also fell during the study period but it did not change in males. The only patient group to show an increased incidence of open fractures were cyclists. In vehicle occupants the incidence fell throughout the study period but it levelled off in pedestrians and motorcyclists. There was no difference in the severity of injury in any group during the study period. The most severe open fractures were those of the distal femur and femoral diaphysis although open tibial diaphyseal fractures were the most common fracture in all patient groups. CONCLUSIONS: Improved car design and road safety legislation has resulted in a reduction in the incidence of open fractures in vehicle occupants, pedestrians and motorcyclists. The most obvious group to have benefitted from this are older female pedestrians. The only group to show an increase in age during the study period were male motorcyclists.


Subject(s)
Accident Prevention/trends , Accidents, Traffic/statistics & numerical data , Fractures, Open/epidemiology , Hospitalization/statistics & numerical data , Pedestrians , Safety Management/legislation & jurisprudence , Accident Prevention/statistics & numerical data , Accidents, Traffic/prevention & control , Accidents, Traffic/trends , Adolescent , Adult , Age Distribution , Automobiles/legislation & jurisprudence , Bicycling/legislation & jurisprudence , Female , Hospitalization/trends , Humans , Incidence , Injury Severity Score , Male , Middle Aged , Motorcycles/legislation & jurisprudence , Pedestrians/statistics & numerical data , Retrospective Studies , Sex Distribution , United Kingdom/epidemiology , Walking/legislation & jurisprudence , Young Adult
9.
mBio ; 8(3)2017 06 13.
Article in English | MEDLINE | ID: mdl-28611252

ABSTRACT

Many viruses migrate between different cellular compartments for successive stages of assembly. The HSV-1 capsid assembles in the nucleus and then transfers into the cytoplasm. First, the capsid buds through the inner nuclear membrane, becoming coated with nuclear egress complex (NEC) protein. This yields a primary enveloped virion (PEV) whose envelope fuses with the outer nuclear membrane, releasing the capsid into the cytoplasm. We investigated the associated molecular mechanisms by isolating PEVs from US3-null-infected cells and imaging them by cryo-electron microscopy and tomography. (pUS3 is a viral protein kinase in whose absence PEVs accumulate in the perinuclear space.) Unlike mature extracellular virions, PEVs have very few glycoprotein spikes. PEVs are ~20% smaller than mature virions, and the little space available between the capsid and the NEC layer suggests that most tegument proteins are acquired later in the egress pathway. Previous studies have proposed that NEC is organized as hexamers in honeycomb arrays in PEVs, but we find arrays of heptameric rings in extracts from US3-null-infected cells. In a PEV, NEC contacts the capsid predominantly via the pUL17/pUL25 complexes which are located close to the capsid vertices. Finally, the NEC layer dissociates from the capsid as it leaves the nucleus, possibly in response to pUS3-mediated phosphorylation. Overall, nuclear egress emerges as a process driven by a program of multiple weak interactions.IMPORTANCE On its maturation pathway, the newly formed HSV-1 nucleocapsid must traverse the nuclear envelope, while respecting the integrity of that barrier. Nucleocapsids (125 nm in diameter) are too large to pass through the nuclear pore complexes that conduct most nucleocytoplasmic traffic. It is now widely accepted that the process involves envelopment/de-envelopment of a key intermediate-the primary enveloped virion. In wild-type infections, PEVs are short-lived, which has impeded study. Using a mutant that accumulates PEVs in the perinuclear space, we were able to isolate PEVs in sufficient quantity for structural analysis by cryo-electron microscopy and tomography. The findings not only elucidate the maturation pathway of an important human pathogen but also have implications for cellular processes that involve the trafficking of large macromolecular complexes.


Subject(s)
Herpesvirus 1, Human/physiology , Virion/physiology , Virus Release , Animals , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Nucleus , Chlorocebus aethiops , Cryoelectron Microscopy , Herpesvirus 1, Human/genetics , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Phosphorylation , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Assembly
10.
J Virol ; 90(10): 5176-86, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26984725

ABSTRACT

UNLABELLED: The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Šin diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids-which develop into infectious virions-are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE: In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation damage was used to localize internal proteins of HSV-1, yielding insights into how capsid maturation is regulated. The scaffolding protein, which forms inner shells in the procapsid and B capsid, is exceptionally bubbling-prone. In the mature DNA-filled C capsid, a previously undetected protein was found to underlie the icosahedral vertices: this is tentatively assigned as a storage form of the viral protease. We also observed a capsid species that appears to contain substantial amounts of scaffolding protein as well as DNA, suggesting that DNA packaging and expulsion of the scaffolding protein are coupled processes.


Subject(s)
Capsid Proteins/chemistry , Capsid/chemistry , Capsid/ultrastructure , Herpesvirus 1, Human/ultrastructure , Capsid/metabolism , Cryoelectron Microscopy/instrumentation , Cryoelectron Microscopy/methods , DNA Packaging , Herpesvirus 1, Human/chemistry , Virion , Virus Assembly
11.
mBio ; 6(5): e01525-15, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26443463

ABSTRACT

UNLABELLED: The herpes simplex virus 1 (HSV-1) capsid is a massive particle (~200 MDa; 1,250-Å diameter) with T=16 icosahedral symmetry. It initially assembles as a procapsid with ~4,000 protein subunits of 11 different kinds. The procapsid undergoes major changes in structure and composition as it matures, a process driven by proteolysis and expulsion of the internal scaffolding protein. Assembly also relies on an external scaffolding protein, the triplex, an α2ß heterotrimer that coordinates neighboring capsomers in the procapsid and becomes a stabilizing clamp in the mature capsid. To investigate the mechanisms that regulate its assembly, we developed a novel isolation procedure for the metastable procapsid and collected a large set of cryo-electron microscopy data. In addition to procapsids, these preparations contain maturation intermediates, which were distinguished by classifying the images and calculating a three-dimensional reconstruction for each class. Appraisal of the procapsid structure led to a new model for assembly; in it, the protomer (assembly unit) consists of one triplex, surrounded by three major capsid protein (MCP) subunits. The model exploits the triplexes' departure from 3-fold symmetry to explain the highly skewed MCP hexamers, the triplex orientations at each 3-fold site, and the T=16 architecture. These observations also yielded new insights into maturation. IMPORTANCE: This paper addresses the molecular mechanisms that govern the self-assembly of large, structurally complex, macromolecular particles, such as the capsids of double-stranded DNA viruses. Although they may consist of thousands of protein subunits of many different kinds, their assembly is precise, ranking them among the largest entities in the biosphere whose structures are uniquely defined to the atomic level. Assembly proceeds in two stages: formation of a precursor particle (procapsid) and maturation, during which major changes in structure and composition take place. Our analysis of the HSV procapsid by cryo-electron microscopy suggests a hierarchical pathway in which multisubunit "protomers" are the building blocks of the procapsid but their subunits are redistributed into different subcomplexes upon being incorporated into a nascent procapsid and are redistributed again in maturation. Assembly is a highly virus-specific process, making it a potential target for antiviral intervention.


Subject(s)
Capsid/metabolism , Simplexvirus/physiology , Virus Assembly , Capsid/ultrastructure , Cryoelectron Microscopy , Models, Molecular , Protein Multimerization , Simplexvirus/ultrastructure
12.
Nucleic Acids Res ; 43(8): 4274-83, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25820430

ABSTRACT

Genome packing in adenovirus has long evaded precise description, since the viral dsDNA molecule condensed by proteins (core) lacks icosahedral order characteristic of the virus protein coating (capsid). We show that useful insights regarding the organization of the core can be inferred from the analysis of spatial distributions of the DNA and condensing protein units (adenosomes). These were obtained from the inspection of cryo-electron tomography reconstructions of individual human adenovirus particles. Our analysis shows that the core lacks symmetry and strict order, yet the adenosome distribution is not entirely random. The features of the distribution can be explained by modeling the condensing proteins and the part of the genome in each adenosome as very soft spheres, interacting repulsively with each other and with the capsid, producing a minimum outward pressure of ∼0.06 atm. Although the condensing proteins are connected by DNA in disrupted virion cores, in our models a backbone of DNA linking the adenosomes is not required to explain the experimental results in the confined state. In conclusion, the interior of an adenovirus infectious particle is a strongly confined and dense phase of soft particles (adenosomes) without a strictly defined DNA backbone.


Subject(s)
Adenoviridae/ultrastructure , DNA, Viral/ultrastructure , Viral Core Proteins/ultrastructure , Virion/ultrastructure , Electron Microscope Tomography , Molecular Dynamics Simulation
13.
EMBO J ; 33(17): 1896-911, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25024436

ABSTRACT

Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (~30,000 iron atoms versus ~3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration.


Subject(s)
Bacterial Physiological Phenomena , Bacterial Proteins/metabolism , Iron/metabolism , Macromolecular Substances/metabolism , Myxococcus xanthus/physiology , Nanoparticles/metabolism , Oxidative Stress , Cryoelectron Microscopy , Models, Molecular , Myxococcus xanthus/ultrastructure , Protein Multimerization
14.
J Biol Chem ; 288(35): 25276-25284, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23857636

ABSTRACT

The Serratia entomophila antifeeding prophage (Afp) is a bullet-shaped toxin-delivery apparatus similar to the R-pyocins of Pseudomonas aeruginosa. Morphologically it resembles the sheathed tail of bacteriophages such as T4, including a baseplate at one end. It also shares features with the type VI secretion systems. Cryo-electron micrographs of tilted Afp specimens (up to 60 degrees) were analyzed to determine the correct cyclic symmetry to overcome the limitation imposed by exclusively side views in nominally untilted specimens. An asymmetric reconstruction shows clear 6-fold cyclic symmetry contrary to a previous conclusion of 4-fold symmetry based on analysis of only the preferred side views (Sen, A., Rybakova, D., Hurst, M. R., and Mitra, A. K. (2010) J. Bacteriol. 192, 4522-4525). Electron tomography of negatively stained Afp revealed right-handed helical striations in many of the particles, establishing the correct hand. Higher quality micrographs of untilted specimens were processed to produce a reconstruction at 2.0-nm resolution with imposed 6-fold symmetry. The helical parameters of the sheath were determined to be 8.14 nm for the subunit rise along and 40.5° for the rotation angle around the helix. The sheath is similar to that of the T4 phage tail but with a different arrangement of the subdomain of the polymerizing sheath protein(s). The central tube is similar to the diameter and axial width of the Hcp1 hexamer of P. aeruginosa type VI secretion system. The tube extends through the baseplate into a needle resembling the "puncture device" of the T4 tail. The tube contains density that may be the toxin and/or a length-determining protein.


Subject(s)
Bacteriophages/ultrastructure , Serratia/virology , Bacterial Secretion Systems/physiology , Bacteriophages/metabolism , Serratia/metabolism
15.
J Struct Biol ; 184(1): 43-51, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23688956

ABSTRACT

Clathrin coats, which stabilize membrane curvature during endocytosis and vesicular trafficking, form highly polymorphic fullerene lattices. We used cryo-electron tomography to visualize coated particles in isolates from bovine brain. The particles range from ∼66 to ∼134nm in diameter, and only 20% of them (all ⩾80nm) contain vesicles. The remaining 80% are clathrin "baskets", presumably artifactual assembly products. Polyhedral models were built for 54 distinct coat geometries. In true coated vesicles (CVs), most vesicles are offset to one side, leaving a crescent of interstitial space between the coat and the membrane for adaptor proteins and other components. The latter densities are fewer on the membrane-proximal side, which may represent the last part of the vesicle to bud off. A small number of densities - presumably cargo proteins - are associated with the interior surface of the vesicles. The clathrin coat, adaptor proteins, and vesicle membrane contribute almost all of the mass of a CV, with most cargoes accounting for only a few percent. The assembly of a CV therefore represents a massive biosynthetic effort to internalize a relatively diminutive payload. Such a high investment may be needed to overcome the resistance of membranes to high curvature.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Animals , Brain/metabolism , Cattle , Electron Microscope Tomography/methods , Electrons
16.
Microsc Microanal ; 18(5): 1043-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23040048

ABSTRACT

We investigated the effects of sample preparation and of the exposure to an electron beam on particles in cryo-electron tomographs. Various virus particles with icosahedral symmetry were examined, allowing a comparison of symmetrically related components that should be identical in structure but might be affected differently by these imaging artifacts. Comparison of tomographic reconstructions with previously determined structures established by an independent method showed that neither freezing nor electron beam exposure produced a significant amount of shrinkage along the z axis (thickness). However, we observed damage to regions of the particles located close to the surface of the vitreous ice.


Subject(s)
Bacteriophages/ultrastructure , Cryoelectron Microscopy/methods , Cytological Techniques/methods , Viruses/ultrastructure , Artifacts , Bacteriophages/chemistry , Viruses/chemistry
17.
J Virol ; 86(20): 11078-85, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22855483

ABSTRACT

Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses.


Subject(s)
Ross River virus/ultrastructure , Rubella virus/ultrastructure , Animals , Capsid Proteins/analysis , Capsid Proteins/chemistry , Cell Line , Chlorocebus aethiops , Cryoelectron Microscopy , Electron Microscope Tomography , Freezing , Glycoproteins , Membrane Glycoproteins/analysis , Membrane Glycoproteins/chemistry , Nucleocapsid/ultrastructure , Rubella/virology , Rubella virus/chemistry , Vero Cells , Viral Envelope Proteins/analysis , Viral Envelope Proteins/chemistry , Virus Assembly
18.
J Virol ; 86(22): 12129-37, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22933285

ABSTRACT

Retrovirus infection starts with the binding of envelope glycoproteins to host cell receptors. Subsequently, conformational changes in the glycoproteins trigger fusion of the viral and cellular membranes. Some retroviruses, such as avian sarcoma/leukosis virus (ASLV), employ a two-step mechanism in which receptor binding precedes low-pH activation and fusion. We used cryo-electron tomography to study virion/receptor/liposome complexes that simulate the interactions of ASLV virions with cells. Binding the soluble receptor at neutral pH resulted in virions capable of binding liposomes tightly enough to alter their curvature. At virion-liposome interfaces, the glycoproteins are ∼3-fold more concentrated than elsewhere in the viral envelope, indicating specific recruitment to these sites. Subtomogram averaging showed that the oblate globular domain in the prehairpin intermediate (presumably the receptor-binding domain) is connected to both the target and the viral membrane by 2.5-nm-long stalks and is partially disordered, compared with its native conformation. Upon lowering the pH, fusion took place. Fusion is a stochastic process that, once initiated, must be rapid, as only final (postfusion) products were observed. These fusion products showed glycoprotein spikes on their surface, with their interiors occupied by patches of dense material but without capsids, implying their disassembly. In addition, some of the products presented a density layer underlying and resolved from the viral membrane, which may represent detachment of the matrix protein to facilitate the fusion process.


Subject(s)
Alpharetrovirus/metabolism , Electron Microscope Tomography/methods , Membrane Fusion , Retroviridae/metabolism , Animals , Cell Line , Chickens , Computer Simulation , Cryoelectron Microscopy/methods , Fibroblasts/virology , Fluorescence Resonance Energy Transfer/methods , Glycoproteins/chemistry , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted , Liposomes/chemistry , Protein Binding , Viral Envelope Proteins/chemistry
19.
Proc Natl Acad Sci U S A ; 109(35): 13996-4000, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22891297

ABSTRACT

Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.


Subject(s)
Newcastle Disease/virology , Newcastle disease virus/growth & development , Newcastle disease virus/ultrastructure , Nucleoproteins/chemistry , Viral Proteins/chemistry , Animals , Crystallography, X-Ray , Dimerization , Glycoproteins/chemistry , Glycoproteins/metabolism , Microscopy, Electron , Mononegavirales/ultrastructure , Newcastle disease virus/metabolism , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Nucleocapsid Proteins , Nucleoproteins/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship , Viral Proteins/metabolism , Virion/chemistry , Virion/growth & development , Virus Replication/physiology
20.
J Biol Chem ; 287(37): 31582-95, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22791715

ABSTRACT

Adenovirus assembly concludes with proteolytic processing of several capsid and core proteins. Immature virions containing precursor proteins lack infectivity because they cannot properly uncoat, becoming trapped in early endosomes. Structural studies have shown that precursors increase the network of interactions maintaining virion integrity. Using different biophysical techniques to analyze capsid disruption in vitro, we show that immature virions are more stable than the mature ones under a variety of stress conditions and that maturation primes adenovirus for highly cooperative DNA release. Cryoelectron tomography reveals that under mildly acidic conditions mimicking the early endosome, mature virions release pentons and peripheral core contents. At higher stress levels, both mature and immature capsids crack open. The virus core is completely released from cracked capsids in mature virions, but it remains connected to shell fragments in the immature particle. The extra stability of immature adenovirus does not equate with greater rigidity, because in nanoindentation assays immature virions exhibit greater elasticity than the mature particles. Our results have implications for the role of proteolytic maturation in adenovirus assembly and uncoating. Precursor proteins favor assembly by establishing stable interactions with the appropriate curvature and preventing premature ejection of contents by tightly sealing the capsid vertices. Upon maturation, core organization is looser, particularly at the periphery, and interactions preserving capsid curvature are weakened. The capsid becomes brittle, and pentons are more easily released. Based on these results, we hypothesize that changes in core compaction during maturation may increase capsid internal pressure to trigger proper uncoating of adenovirus.


Subject(s)
Adenoviridae/physiology , Capsid/physiology , DNA, Viral/metabolism , Virus Internalization , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...