Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2869, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693144

ABSTRACT

Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.


Subject(s)
Acyltransferases , Energy Metabolism , Hepatocytes , Induced Pluripotent Stem Cells , Lipase , Lipid Droplets , Liver Cirrhosis, Alcoholic , Mitochondria , Phospholipases A2, Calcium-Independent , Humans , Hepatocytes/metabolism , Hepatocytes/pathology , Induced Pluripotent Stem Cells/metabolism , Lipid Droplets/metabolism , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/pathology , Liver Cirrhosis, Alcoholic/genetics , Lipase/metabolism , Lipase/genetics , Mitochondria/metabolism , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Middle Aged , Adult , Oxidative Stress
2.
Epigenetics ; 15(9): 959-971, 2020 09.
Article in English | MEDLINE | ID: mdl-32164487

ABSTRACT

Human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV+ OPSCC) represents a unique disease entity within head and neck cancer with rising incidence. Previous work has shown that alternative splicing events (ASEs) are prevalent in HPV+ OPSCC, but further validation is needed to understand the regulation of this process and its role in these tumours. In this study, eleven ASEs (GIT2, CTNNB1, MKNK2, MRPL33, SIPA1L3, SNHG6, SYCP2, TPRG1, ZHX2, ZNF331, and ELOVL1) were selected for validation from 109 previously published candidate ASEs to elucidate the post-transcriptional mechanisms of oncogenesis in HPV+ disease. In vitro qRT-PCR confirmed differential expression of 9 of 11 ASE candidates, and in silico analysis within the TCGA cohort confirmed 8 of 11 candidates. Six ASEs (MRPL33, SIPA1L3, SNHG6, TPRG1, ZHX2, and ELOVL1) showed significant differential expression across both methods. Further evaluation of chromatin modification revealed that ASEs strongly correlated with cancer-specific distribution of acetylated lysine 27 of histone 3 (H3K27ac). Subsequent epigenetic treatment of HPV+ HNSCC cell lines (UM-SCC-047 and UPCI-SCC-090) with JQ1 not only induced downregulation of cancer-specific ASE isoforms, but also growth inhibition in both cell lines. The UPCI-SCC-090 cell line, with greater ASE expression, also showed more significant growth inhibition after JQ1 treatment. This study confirms several novel cancer-specific ASEs in HPV+OPSCC and provides evidence for the role of chromatin modifications in regulation of alternative splicing in HPV+OPSCC. This highlights the role of epigenetic changes in the oncogenesis of HPV+OPSCC, which represents a unique, unexplored target for therapeutics that can alter the global post-transcriptional landscape.


Subject(s)
Alternative Splicing , Carcinoma, Squamous Cell/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation, Neoplastic , Oropharyngeal Neoplasms/genetics , Alphapapillomavirus/pathogenicity , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/virology , Cell Line, Tumor , Epigenesis, Genetic , Genetic Loci , Histone Code , Histones/chemistry , Histones/metabolism , Humans , Oropharyngeal Neoplasms/metabolism , Oropharyngeal Neoplasms/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...