Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 52(20): 4806-12, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23852192

ABSTRACT

Sintered polytetrafluoroethylene (PTFE) is highly reflective and is widely used as a reference standard in remote sensing, radiometry, and spectroscopy. The relative change in output flux from a PTFE integrating sphere over the room temperature phase transition at 19°C has been measured at a monochromatic wavelength of 633 nm as 1.82±0.21%. The change in output flux was attributed to a small change of 0.09±0.02% in the total hemispherical reflectance of PTFE, caused by a change in its material density as a result of the phase transition. For the majority of users, this small change measured in total hemispherical reflectance is unlikely to impact significantly the accuracy of PTFE flat panel reflectors used as reference standards. However, owing to the multiple reflections that occur inside an integrating sphere cavity, the effect is multiplied and remedial action should be applied, either via a mathematical correction or through temperature stabilization of the integrating sphere when high accuracy (<5%) measurements of flux, irradiance, or radiance are required from PTFE-based integrating spheres at temperatures close to the phase transition at 19°C.

2.
Philos Trans A Math Phys Eng Sci ; 369(1953): 4028-63, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21930564

ABSTRACT

The Earth's climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a 'primary standard' and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a 'metrology laboratory in space'.

SELECTION OF CITATIONS
SEARCH DETAIL
...