Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21 Suppl 6: A909-16, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24514932

ABSTRACT

The spectral conversion of incident sunlight by appropriate photoluminescent materials has been a widely studied issue for improving the efficiency of photovoltaic solar energy harvesting. By using phosphors with suitable excitation/emission properties, also the light conditions for plants can be adjusted to match the absorption spectra of chlorophyll dyes, in this way increasing the photosynthetic activity of the plant. Here, we report on the application of this principle to a high plant, Spinacia oleracea. We employ a calcium strontium sulfide phosphor doped with divalent europium (Ca0.4Sr0.6S:Eu(2+), CSSE) on a backlight conversion foil in photosynthesis experiments. We show that this phosphor can be used to effectively convert green to red light, centering at a wavelength of ~650 nm which overlaps the absorption peaks of chlorophyll a/b pigments. A measurement system was developed to monitor the photosynthetic activity, expressed as the CO2 assimilation rate of spinach leaves under various controlled light conditions. Results show that under identical external light supply which is rich in green photons, the CO2 assimilation rate can be enhanced by more than 25% when the actinic light is modified by the CSSE conversion foil as compared to a purely reflecting reference foil. These results show that the phosphor could be potentially applied to modify the solar spectrum by converting the green photons into photosynthetically active red photons for improved photosynthetic activity.


Subject(s)
Luminescence , Photosynthesis , Spinacia oleracea/physiology , Strontium/chemistry , Carbon Dioxide/metabolism , Photons , Spectrometry, Fluorescence , Time Factors
2.
Phys Chem Chem Phys ; 14(31): 10886-90, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22772866

ABSTRACT

Photoluminescence spectroscopy has been performed in situ during device operation and after switch-off on ionic transition metal complex (iTMC)-based sandwich-type light-emitting electrochemical cells (LECs). It is demonstrated that the photoluminescence of the LECs decreases with increasing operating time. For operating times up to three hours the decline in photoluminescence is fully recoverable after switching off the bias. These results imply that doping of the iTMC layer is responsible, not only, for the turn-on of LECs but also for their lifetimes.

3.
J Colloid Interface Sci ; 358(1): 32-8, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21440901

ABSTRACT

SiO(2)/Zn(2)SiO(4):Mn(2+) core-shell nanoparticles with mean diameters in the range of 55-220 nm were prepared by a modified Pechini sol-gel method followed by lyophilization and annealing at temperatures of 800-1100°C. The as-synthesized nanoparticles were characterized by transmission electron microscopy, X-ray diffraction analysis, and photoluminescence spectroscopy. The results demonstrate that the crystal structure of the shell and the optical properties can be tuned by the annealing temperature and a variation of the concentration of doping ions. Under UV excitation, the samples emit green luminescence with its maximum at 525 nm, typical for the Mn(2+) ions in α-Zn(2)SiO(4). The resulting nanoparticles were successfully modified with amine and carboxyl functions with respect to a later attachment of biological moieties.

4.
Biol Chem ; 390(11): 1133-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19747078

ABSTRACT

Optical data recording is one of the most widely used and efficient systems of memory in the non-living world. The application of color centers in this context offers not only systems of high speed in writing and read-out due to a high degree of parallelism in data handling but also a possibility to set up models of neural networks. In this way, systems with a high potential for image processing, pattern recognition and logical operations can be constructed. A limitation to storage density is given by the diffraction limit of optical data recording. It is shown that this limitation can at least in principle be overcome by the principle of spectral hole burning, which results in systems of storage capacities close to the human brain system.


Subject(s)
Memory , Nerve Net , Color , Humans , Information Storage and Retrieval , Optical Phenomena , Radiography
5.
Phys Rev Lett ; 100(25): 256404, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18643684

ABSTRACT

Theoretical predictions about the n-type conductivity in nitride semiconductors are discussed in the light of results of a high-frequency EPR an ENDOR study. It is shown that two types of effective-mass-like, shallow donors with a delocalized wave function exist in unintentionally doped AlN. The experiments demonstrate how the transformation from a shallow donor to a deep (DX) center takes place and how the deep DX center can be reconverted into a shallow donor forming a spin triplet and singlet states.

6.
J Phys Chem B ; 110(46): 23175-8, 2006 Nov 23.
Article in English | MEDLINE | ID: mdl-17107162

ABSTRACT

A novel organometallic synthesis method for the preparation of colloidal ZnS nanoparticles is presented. This method enables the synthesis of undoped ZnS nanocrystals as well as doping with Cu, Pb, or both. The particles can be covered with an undoped layer of ZnS, forming core/shell-type particles with the ZnS:Pb, ZnS:Cu, or ZnS:Cu,Pb cores. The particles were characterized via TEM, XRD, dynamic light scattering, and optical spectroscopy. We investigated the extrinsic surface defects and their coverage with an additional ZnS layer in detail by temperature-dependent luminescence and luminescence lifetime spectroscopy.


Subject(s)
Colloids/chemistry , Copper/chemistry , Lead/chemistry , Nanostructures/chemistry , Spectrum Analysis , Sulfides/chemical synthesis , Zinc Compounds/chemical synthesis , Crystallization , Luminescence , Surface Properties , Temperature , Time Factors
7.
Appl Opt ; 41(23): 4891-6, 2002 Aug 10.
Article in English | MEDLINE | ID: mdl-12197658

ABSTRACT

The two-color photorefractive response of near stoichiometric lithium niobate (SLN) doped with Mg above a critical threshold has been investigated. Striking differences as compared with non Mg-doped material were observed: The intermediate level in the two-color writing process has approximately a two orders of magnitude longer lifetime in SLN:Mg than in nominally undoped SLN, the grating is written in a shallower level but can be fixed via a simple thermal process and complementary electron-hole gratings are formed. It is proposed that the Fe impurity level moves from below the small-polaron level in nonMgO-doped material to above it, resulting in the increased lifetime of the small polaron. These changes are associated with a shift of the Fe from a Li site to a Nb site. The two-color sensitivity is higher than in the absence of MgO but the dynamic range is much lower.

SELECTION OF CITATIONS
SEARCH DETAIL
...