Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 326: 113175, 2020 04.
Article in English | MEDLINE | ID: mdl-31923390

ABSTRACT

Salicylate intoxication is a cause of tinnitus and comorbidly associated with anxiety in humans. In a previous work, we showed that salicylate induces anxiety-like behavior and hippocampal type 2 theta oscillations (theta2) in mice. Here we investigate if the anxiogenic effect of salicylate is dependent on age and previous tinnitus experience. We also tested whether a single dose of DMT can prevent this effect. Using microwire electrode arrays, we recorded local field potential in young (4-5- month-old) and old (11-13-month-old) mice to study the electrophysiological effect of tinnitus in the ventral hippocampus (vHipp) and medial prefrontal cortex (mPFC) in an open field arena and elevated plus maze 1h after salicylate (300mg/kg) injection. We found that anxiety-like behavior and increase in theta2 oscillations (4-6 Hz), following salicylate pre-treatment, only occurs in young (normal hearing) mice. We also show that theta2 and slow gamma oscillations increase in the vHipp and mPFC in a complementary manner during anxiety tests in the presence of salicylate. Finally, we show that pre-treating mice with a single dose of the hallucinogenic 5-MeO-DMT prevents anxiety-like behavior and the increase in theta2 and slow gamma oscillations after salicylate injection in normal hearing young mice. This work further support the hypothesis that anxiety-like behavior after salicylate injection is triggered by tinnitus and require normal hearing. Moreover, our results show that hallucinogenic compounds can be effective in treating tinnitus-related anxiety.


Subject(s)
Aging/psychology , Anxiety/chemically induced , Anxiety/psychology , Hallucinogens/therapeutic use , Methoxydimethyltryptamines/therapeutic use , Salicylates , Animals , Anxiety/prevention & control , Behavior, Animal , Electroencephalography/drug effects , Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Noise-Induced/complications , Hippocampus/physiopathology , Male , Mice , Mice, Inbred C57BL , Microelectrodes , Motor Activity , Prefrontal Cortex/physiopathology , Salicylates/antagonists & inhibitors , Tinnitus/chemically induced , Tinnitus/physiopathology , Tinnitus/psychology
2.
Hippocampus ; 29(8): 755-761, 2019 08.
Article in English | MEDLINE | ID: mdl-30767318

ABSTRACT

Prolonged increases in excitation can trigger cell-wide homeostatic responses in neurons, altering membrane channels, promoting morphological changes, and ultimately reducing synaptic weights. However, how synaptic downscaling interacts with classical forms of Hebbian plasticity is still unclear. In this study, we investigated whether chronic optogenetic stimulation of hippocampus CA1 pyramidal neurons in freely moving mice could (a) cause morphological changes reminiscent of homeostatic scaling, (b) modulate synaptic currents that might compensate for chronic excitation, and (c) lead to alterations in Hebbian plasticity. After 24 hr of stimulation with 15-ms blue light pulses every 90 s, dendritic spine density and area were reduced in the CA1 region of mice expressing channelrhodopsin-2 (ChR2) when compared to controls. This protocol also reduced the amplitude of mEPSCs for both the AMPA and NMDA components in ex vivo slices obtained from ChR2-expressing mice immediately after the end of stimulation. Finally, chronic stimulation impaired the induction of LTP and facilitated that of LTD in these slices. Our results indicate that neuronal responses to prolonged network excitation can modulate subsequent Hebbian plasticity in the hippocampus.


Subject(s)
Action Potentials/physiology , Dendritic Spines/physiology , Hippocampus/physiology , Neuronal Plasticity/physiology , Animals , Mice , Neurons/physiology , Optogenetics , Synapses/physiology
3.
Hippocampus ; 29(1): 15-25, 2019 01.
Article in English | MEDLINE | ID: mdl-30152905

ABSTRACT

Salicylate intoxication is a cause of tinnitus in humans and it is often used to produce tinnitus-like perception in animal models. Here, we assess whether salicylate induces anxiety-like electrophysiological and behavioral signs. Using microwire electrode arrays, we recorded local field potential in the ventral and, in some experiments dorsal hippocampus, in an open field arena 1 hr after salicylate (300 mg/kg) injection. We found that animals treated with salicylate moved dramatically less than saline treated animals. Salicylate-treated animals showed a strong 4-6 Hz (type 2) oscillation in the ventral hippocampus (with smaller peaks in dorsal hippocampus electrodes). Coherence in the 4-6 Hz-theta band was low in the ventral and dorsal hippocampus when compared to movement-related theta coherence (7-10 Hz). Moreover, movement related theta oscillation frequency decreased and its dependency on running speed was abolished. Our results suggest that salicylate-induced theta is mostly restricted to the ventral hippocampus. Slow theta has been classically associated to anxiety-like behaviors. Here, we show that salicylate application can consistently generate low frequency theta in the ventral hippocampus. Tinnitus and anxiety show strong comorbidity and the increase in ventral hippocampus low frequency theta could be part of this association.


Subject(s)
Anxiety/chemically induced , Anxiety/psychology , Hippocampus/drug effects , Running/psychology , Salicylates/toxicity , Theta Rhythm/drug effects , Animals , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Running/physiology , Theta Rhythm/physiology
4.
Behav Brain Res ; 284: 187-95, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25698599

ABSTRACT

In rodents, the novel object preference test has been used as a behavioral parameter for evaluation of neotic exploratory behavior, and also for memory consolidation tasks. Geometric patterns of this preference are poorly understood, and may vary among species. We evaluated in Wistar rats (Rattus norvergicus) a possible exploration preference considering aluminum tripartite rounded and cylindrical objects of different proportions: 1.2; 1.618; 1.8. At the first day, animals were exposed to 1.2; 1.6 and 1.8 rounded objects. At 24h after, these animals were exposed to the same objects, together with three new steel cylindrical objects (same proportions). ANOVA and T tests were used to quantify object exploration for each animal (p<0.05). Data analysis pointed to a longer exploration time of the object 1.2 at the three different protocols indicating a preference pattern on the first day exposition. On the second day the exploration was similar in both familiar and unfamiliar objects, revealing no novel object preference for cylinders. However, we found an object preference related to the 1.2 proportion (balls plus cylinders), in two of three position protocols. In addition, on a single exposition with both cylinders and rounded objects, rats revealed a rounded object preference. The 1.2 preference disclosed by rats also reflected the proportion of their body. From nine main measures of body ratios, seven were close to 1.2 ratio. The correspondence between body ratios and object preference may be explained by habituation learning and by sexual selection, and highlight innate factors regarding aesthetic preferences among species.


Subject(s)
Rats, Wistar/psychology , Space Perception , Spatial Behavior , Animals , Esthetics , Exploratory Behavior , Male , Physical Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...