Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 55(9): 5826-5835, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33876924

ABSTRACT

To reduce sulfur emission from global shipping, exhaust gas cleaning systems are increasingly being installed on board commercial ships. These so-called scrubbers extract SOX by spraying water into the exhaust gas. An effluent is created which is either released directly to the sea (open-loop system) or treated to remove harmful substances before release (closed-loop system). We found severe toxic effects in the ubiquitous planktonic copepod Calanus helgolandicus of exposure to effluents from two closed-loop systems and one open-loop system on North Sea ships. The effluents contained high concentrations of heavy metals and polycyclic aromatic hydrocarbons (PAHs), including alkylated PAHs. We observed significantly elevated mortality rates and impaired molting already in the lowest tested concentrations of each effluent: 0.04 and 0.1% closed-loop effluents and 1% open-loop effluent. These concentrations correspond to total hydrocarbon concentrations of 2.8, 2.0, and 3.8 µg L-1, respectively, and compared to previous studies on oil toxicity in copepods, scrubber effluents appear more toxic than, for example, crude oil. None of the individual PAHs or heavy metals analyzed in the effluents occurred in concentrations which could explain the high toxicity. The effluents showed unexpected alkylated PAH profiles, and we hypothesize that scrubbers act as witch's cauldrons where undesired toxic compounds form so that the high toxicity stems from compounds we know very little about.


Subject(s)
Copepoda , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , North Sea , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Mar Pollut Bull ; 126: 575-584, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28982478

ABSTRACT

Environmental concentrations and effects of bilge water contaminants in two Baltic Sea areas were estimated from modelling of discharge rates and analytical data on bilge water from seven ships. Biodegradation of bilge water oil was accounted for and annual water concentrations were estimated to peak in late spring, which coincides with the beginning of a period with extensive biological activities in the sea. Concentrations on bilge water metals were calculated both as water concentrations and as the annual contribution of metals to sediments. The predicted bilge water concentrations of oil and metal in the marine environment were estimated to be 4 to 8 orders of magnitude lower than reported toxic concentrations. However, available toxicity data are based on short term exposure and there is to date limited information on toxic effects of the small but chronically elevated contaminant concentrations derived from bilge water discharge and other operational shipping activities.


Subject(s)
Ships , Wastewater/analysis , Water Pollutants, Chemical/analysis , Baltic States , Environmental Monitoring , Metals/analysis , Oceans and Seas , Petroleum/analysis , Risk Assessment
3.
J Air Waste Manag Assoc ; 59(12): 1391-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20066904

ABSTRACT

This paper presents the results of field emission measurements that have been carried out on the 4500-kW four-stroke main engine on-board a product tanker. Two fuel qualities--heavy fuel oil (HFO) and marine gas oil (MGO)-have been tested on the same engine for comparable load settings. A fuel switch within the marine sector is approaching and the aim of this study is to draw initial conclusions on the subsequent effects on ship exhaust gas composition and emission factors with a focus on particles. Measurements on exhaust gas concentrations of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), total hydrocarbons (HCs), and particulate matter (PM) were conducted. The gases, except SO2, did not show any major differences between the fuels. Specific PM emissions were generally higher for HFO than for MGO; however, for the smallest size-fraction measured containing particles 0.30-0.40 microm in diameter, the opposite is observed. This finding emphasizes that to minimize negative health effects of particles from ships, further regulation may be needed to reduce small-sized particles; a fuel shift to low sulfur fuel alone does not seem to accomplish this reduction. The average of this and previously published data from on-board studies on particle emissions from ships results in emissions factors of 0.33 and 1.34 g/kWh for marine distillate oil (MDO) and HFO, respectively. Accounting for 1 standard deviation in each direction from the average values gives a range of 0.18-0.48 g/kWh for MDO and 0.56-2.12 g/kWh for HFO.


Subject(s)
Air Pollutants/analysis , Fuel Oils , Particulate Matter/analysis , Ships , Vehicle Emissions/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Hydrocarbons/analysis , Nitrogen Oxides/analysis , Particle Size , Sulfur Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL