Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 157, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655549

ABSTRACT

Discovering the predictors of foraging locations can be challenging, and is often the critical missing piece for interpreting the ecological significance of observed movement patterns of predators. This is especially true in dynamic coastal marine systems, where planktonic food resources are diffuse and must be either physically or biologically concentrated to support upper trophic levels. In the Western Antarctic Peninsula, recent climate change has created new foraging sympatry between Adélie (Pygoscelis adeliae) and gentoo (P. papua) penguins in a known biological hotspot near Palmer Deep canyon. We used this recent sympatry as an opportunity to investigate how dynamic local oceanographic features affect aspects of the foraging ecology of these two species. Simulated particle trajectories from measured surface currents were used to investigate the co-occurrence of convergent ocean features and penguin foraging locations. Adélie penguin diving activity was restricted to the upper mixed layer, while gentoo penguins often foraged much deeper than the mixed layer, suggesting that Adélie penguins may be more responsive to dynamic surface convergent features compared to gentoo penguins. We found that, despite large differences in diving and foraging behavior, both shallow-diving Adélie and deeper-diving gentoo penguins strongly selected for surface convergent features. Furthermore, there was no difference in selectivity for shallow- versus deep-diving gentoo penguins. Our results suggest that these two mesopredators are selecting surface convergent features, however, how these surface signals are related to subsurface prey fields is unknown.

2.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29760110

ABSTRACT

Palmer Deep canyon along the central West Antarctic Peninsula is known to have higher phytoplankton biomass than the surrounding non-canyon regions, but the circulation mechanisms that transport and locally concentrate phytoplankton and Antarctic krill, potentially increasing prey availability to upper-trophic-level predators such as penguins and cetaceans, are currently unknown. We deployed a three-site high-frequency radar network that provided hourly surface circulation maps over the Palmer Deep hotspot. A series of particle release experiments were used to estimate surface residence time and connectivity across the canyon. The majority of residence times fell between 1.0 and 3.5 days, with a mean of 2 days and a maximum of 5 days. We found a highly significant negative relationship between wind speed and residence time. Our residence time analysis indicates that the elevated phytoplankton biomass over the central canyon is transported into and out of the hotspot on time scales much shorter than the observed phytoplankton growth rate, suggesting that the canyon may not act as an incubator of phytoplankton productivity as previously suggested. It may instead serve more as a conveyor belt of phytoplankton biomass produced elsewhere, continually replenishing the phytoplankton biomass for the local Antarctic krill community, which in turn supports numerous top predators.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

3.
Proc Natl Acad Sci U S A ; 109(49): 19928-33, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23129657

ABSTRACT

The Younger Dryas--the last major cold episode on Earth--is generally considered to have been triggered by a meltwater flood into the North Atlantic. The prevailing hypothesis, proposed by Broecker et al. [1989 Nature 341:318-321] more than two decades ago, suggests that an abrupt rerouting of Lake Agassiz overflow through the Great Lakes and St. Lawrence Valley inhibited deep water formation in the subpolar North Atlantic and weakened the strength of the Atlantic Meridional Overturning Circulation (AMOC). More recently, Tarasov and Peltier [2005 Nature 435:662-665] showed that meltwater could have discharged into the Arctic Ocean via the Mackenzie Valley ~4,000 km northwest of the St. Lawrence outlet. Here we use a sophisticated, high-resolution, ocean sea-ice model to study the delivery of meltwater from the two drainage outlets to the deep water formation regions in the North Atlantic. Unlike the hypothesis of Broecker et al., freshwater from the St. Lawrence Valley advects into the subtropical gyre ~3,000 km south of the North Atlantic deep water formation regions and weakens the AMOC by <15%. In contrast, narrow coastal boundary currents efficiently deliver meltwater from the Mackenzie Valley to the deep water formation regions of the subpolar North Atlantic and weaken the AMOC by >30%. We conclude that meltwater discharge from the Arctic, rather than the St. Lawrence Valley, was more likely to have triggered the Younger Dryas cooling.


Subject(s)
Climate , Geography , Models, Theoretical , Rivers , Water Movements , Arctic Regions , Atlantic Ocean , Canada , Computer Simulation , Fresh Water , History, Ancient
4.
Nature ; 453(7199): 1236-8, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18580949

ABSTRACT

Roughly 60% of the Earth's outer surface is composed of oceanic crust formed by volcanic processes at mid-ocean ridges. Although only a small fraction of this vast volcanic terrain has been visually surveyed or sampled, the available evidence suggests that explosive eruptions are rare on mid-ocean ridges, particularly at depths below the critical point for seawater (3,000 m). A pyroclastic deposit has never been observed on the sea floor below 3,000 m, presumably because the volatile content of mid-ocean-ridge basalts is generally too low to produce the gas fractions required for fragmenting a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel ridge in the Arctic Basin at 85 degrees E, to acquire photographic and video images of 'zero-age' volcanic terrain on this remote, ice-covered ridge. Here we present images revealing that the axial valley at 4,000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large (>10 km(2)) area. At least 13.5 wt% CO(2) is necessary to fragment magma at these depths, which is about tenfold the highest values previously measured in a mid-ocean-ridge basalt. These observations raise important questions about the accumulation and discharge of magmatic volatiles at ultraslow spreading rates on the Gakkel ridge and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global mid-ocean ridge volcanic system.


Subject(s)
Volcanic Eruptions/statistics & numerical data , Animals , Arctic Regions , Geography , Oceanography , Oceans and Seas , Porifera , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...