Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 13(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38921786

ABSTRACT

Rift Valley fever virus (RVFV) is an adaptable arbovirus that can be transmitted by a wide variety of arthropods. Widespread urban transmission of RVFV has not yet occurred, but peri-urban outbreaks of RVFV have recently been documented in East Africa. We previously reported low-level exposure in urban communities and highlighted the risk of introduction via live animal influx. We deployed a slaughtered animal testing framework in response to an early warning system at two urban slaughterhouses and tested animals entering the meat value chain for anti-RVFV IgG and IgM antibodies. We simultaneously trapped mosquitoes for RVFV and bloodmeal testing. Out of 923 animals tested, an 8.5% IgG seroprevalence was identified but no evidence of recent livestock exposure was detected. Mosquito species abundance varied greatly by slaughterhouse site, which explained 52% of the variance in blood meals. We captured many Culex spp., a known RVFV amplifying vector, at one of the sites (p < 0.001), and this species had the most diverse blood meals. No mosquito pools tested positive for RVFV antigen using a rapid VecTOR test. These results expand understanding of potential RVF urban disease ecology, and highlight that slaughterhouses are key locations for future surveillance, modelling, and monitoring efforts.

2.
One Health ; 15: 100457, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36532672

ABSTRACT

Rift Valley fever virus (RVFV) is an economically devastating, zoonotic arbovirus endemic across Africa with potential to cause severe disease in livestock and humans. Viral spread is primarily driven by movement of domestic ruminants and there is a high potential for transboundary spread. Despite influx of livestock to urban areas in response to the high demand for meat and animal products, RVFV has not been detected in any urban center. The objectives of this study were to determine the feasibility of assessing risk of RVFV introduction to urban Kisumu, Kenya, by testing slaughtered livestock for RVFV exposure and mapping livestock origins. Blood was collected from cattle, sheep, and goats directly after slaughter and tested for anti-RVFV IgG antibodies. Slaughterhouse businessmen responded to a questionnaire on their individual animals' origin, marketplace, and transport means. Thereafter, we mapped livestock flow from origin to slaughterhouse using participatory methods in focus group discussions with stakeholders. Qualitative data on route choice and deviations were spatially integrated into the map. A total of 304 blood samples were collected from slaughtered livestock in October and November 2021. Most (99%) of animals were purchased from 28 different markets across eight counties in Western Kenya. The overall RVFV seroprevalence was 9% (19% cattle, 3% in sheep, and 7% in goats). Migori County bordering Tanzania had the highest county-level seroprevalence (34%) and 80% of all seropositive cattle were purchased at the Suba Kuria market in Migori County. Road quality and animal health influenced stakeholders' decisions for choice of transport means. Overall, this proof-of-concept study offers a sampling framework for RVFV that can be locally implemented and rapidly deployed in response to regional risk. This system can be used in conjunction with participatory maps to improve active livestock surveillance and monitoring of RVFV in Western Kenya, and these methods could be extrapolated to other urban centers or livestock diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...