Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Nat Commun ; 15(1): 5409, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926334

ABSTRACT

Targeted protein degradation (TPD) relies on small molecules to recruit proteins to E3 ligases to induce their ubiquitylation and degradation by the proteasome. Only a few of the approximately 600 human E3 ligases are currently amenable to this strategy. This limits the actionable target space and clinical opportunities and thus establishes the necessity to expand to additional ligases. Here we identify and characterize SP3N, a specific degrader of the prolyl isomerase FKBP12. SP3N features a minimal design, where a known FKBP12 ligand is appended with a flexible alkylamine tail that conveys degradation properties. We found that SP3N is a precursor and that the alkylamine is metabolized to an active aldehyde species that recruits the SCFFBXO22 ligase for FKBP12 degradation. Target engagement occurs via covalent adduction of Cys326 in the FBXO22 C-terminal domain, which is critical for ternary complex formation, ubiquitylation and degradation. This mechanism is conserved for two recently reported alkylamine-based degraders of NSD2 and XIAP, thus establishing alkylamine tethering and covalent hijacking of FBXO22 as a generalizable TPD strategy.


Subject(s)
F-Box Proteins , Proteolysis , Ubiquitination , Humans , F-Box Proteins/metabolism , F-Box Proteins/chemistry , HEK293 Cells , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Protein 1A/genetics , Ubiquitin-Protein Ligases/metabolism , Amines/metabolism , Amines/chemistry , Proteasome Endopeptidase Complex/metabolism , Ligands , Receptors, Cytoplasmic and Nuclear
2.
Nat Chem Biol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907113

ABSTRACT

Metabolic alterations in cancer precipitate in associated dependencies that can be therapeutically exploited. To meet this goal, natural product-inspired small molecules can provide a resource of invaluable chemotypes. Here, we identify orpinolide, a synthetic withanolide analog with pronounced antileukemic properties, via orthogonal chemical screening. Through multiomics profiling and genome-scale CRISPR-Cas9 screens, we identify that orpinolide disrupts Golgi homeostasis via a mechanism that requires active phosphatidylinositol 4-phosphate signaling at the endoplasmic reticulum-Golgi membrane interface. Thermal proteome profiling and genetic validation studies reveal the oxysterol-binding protein OSBP as the direct and phenotypically relevant target of orpinolide. Collectively, these data reaffirm sterol transport as a therapeutically actionable dependency in leukemia and motivate ensuing translational investigation via the probe-like compound orpinolide.

3.
Nat Chem Biol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907112

ABSTRACT

Sterol-binding proteins are important regulators of lipid homeostasis and membrane integrity; however, the discovery of selective modulators can be challenging due to structural similarities in the sterol-binding domains. We report the discovery of potent and selective inhibitors of oxysterol-binding protein (OSBP), which we term oxybipins. Sterol-containing chemical chimeras aimed at identifying new sterol-binding proteins by targeted degradation, led to a significant reduction in levels of Golgi-associated proteins. The degradation occurred in lysosomes, concomitant with changes in protein glycosylation, indicating that the degradation of Golgi proteins was a downstream effect. By establishing a sterol transport protein biophysical assay panel, we discovered that the oxybipins potently inhibited OSBP, resulting in blockage of retrograde trafficking and attenuating Shiga toxin toxicity. As the oxybipins do not target other sterol transporters and only stabilized OSBP in intact cells, we advocate their use as tools to study OSBP function and therapeutic relevance.

4.
Bioorg Med Chem Lett ; 107: 129779, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38729317

ABSTRACT

Targeted protein degradation is mediated by small molecules that induce or stabilize protein-protein interactions between targets and the ubiquitin-proteasome machinery. Currently, there remains a need to expand the repertoire of viable E3 ligases available for hijacking. Notably, covalent chemistry has been employed to engage a handful of E3 ligases, including DCAF11. Here, we disclose a covalent PROTAC that enables DCAF11-dependent degradation, featuring a cyanoacrylamide warhead. Our findings underscore DCAF11 as an interesting candidate with a capacity to accommodate diverse electrophilic chemistries compatible with targeted protein degradation.


Subject(s)
Acrylamides , Humans , Acrylamides/chemistry , Acrylamides/pharmacology , Acrylamides/chemical synthesis , Molecular Structure , Proteolysis/drug effects , Drug Discovery , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Structure-Activity Relationship
5.
Science ; 384(6694): eadk5864, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662832

ABSTRACT

Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.


Subject(s)
Drug Discovery , Machine Learning , Proteomics , Small Molecule Libraries , Humans , Ligands , Protein Binding , Proteome/metabolism , Proteomics/methods , Small Molecule Libraries/chemistry , Ubiquitin-Protein Ligases/metabolism
6.
Nature ; 627(8002): 204-211, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383787

ABSTRACT

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.


Subject(s)
Nuclear Proteins , Transcription Factors , Proteolysis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
7.
Nat Chem Biol ; 20(1): 93-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679459

ABSTRACT

Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12-cyclin K to the DDB1-CUL4-RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure-activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.


Subject(s)
Cyclins , Ubiquitin-Protein Ligases , Cyclins/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Structure-Activity Relationship
8.
Nat Chem Biol ; 20(1): 13-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37978259
9.
Angew Chem Int Ed Engl ; 63(12): e202316730, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38153885

ABSTRACT

Degraders hold the promise to efficiently inactivate previously intractable disease-relevant targets. Unlike traditional inhibitors, degraders act substoichiometrically and rely on the hijacked proteolysis machinery, which can also act as an entry point for resistance. To fully harness the potential of targeted protein degradation, it is crucial to comprehend resistance mechanisms and formulate effective strategies to overcome them. We conducted a chemical screening to identify synthetic lethal vulnerabilities of cancer cells that exhibit widespread resistance to degraders. Comparative profiling followed by tailored optimization delivered the small molecule RBS-10, which shows preferential cytotoxicity against cells pan-resistant to degraders. Multiomics deconvolution of the mechanism of action revealed that RBS-10 acts as a prodrug bioactivated by the oxidoreductase enzyme NQO1, which is highly overexpressed in our resistance models. Collectively, our work informs on NQO1 as an actionable vulnerability to overcome resistance to degraders and as a biomarker to selectively exploit bioactivatable prodrugs in cancer.


Subject(s)
Neoplasms , Prodrugs , Humans , Prodrugs/pharmacology , Proteolysis , NAD(P)H Dehydrogenase (Quinone)/metabolism
10.
ACS Chem Biol ; 18(12): 2464-2473, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098458

ABSTRACT

Molecular glue degraders (MGDs) are small molecules that degrade proteins of interest via the ubiquitin-proteasome system. While MGDs were historically discovered serendipitously, approaches for MGD discovery now include cell-viability-based drug screens or data mining of public transcriptomics and drug response datasets. These approaches, however, have target spaces restricted to the essential proteins. Here we develop a high-throughput workflow for MGD discovery that also reaches the nonessential proteome. This workflow begins with the rapid synthesis of a compound library by sulfur(VI) fluoride exchange chemistry coupled to a morphological profiling assay in isogenic cell lines that vary in levels of the E3 ligase CRBN. By comparing the morphological changes induced by compound treatment across the isogenic cell lines, we were able to identify FL2-14 as a CRBN-dependent MGD targeting the nonessential protein GSPT2. We envision that this workflow would contribute to the discovery and characterization of MGDs that target a wider range of proteins.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin-Protein Ligases , Proteolysis , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Ubiquitin/metabolism
11.
Nat Commun ; 14(1): 7908, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036533

ABSTRACT

Targeted proteasomal and autophagic protein degradation, often employing bifunctional modalities, is a new paradigm for modulation of protein function. In an attempt to explore protein degradation by means of autophagy we combine arylidene-indolinones reported to bind the autophagy-related LC3B-protein and ligands of the PDEδ lipoprotein chaperone, the BRD2/3/4-bromodomain containing proteins and the BTK- and BLK kinases. Unexpectedly, the resulting bifunctional degraders do not induce protein degradation by means of macroautophagy, but instead direct their targets to the ubiquitin-proteasome system. Target and mechanism identification reveal that the arylidene-indolinones covalently bind DCAF11, a substrate receptor in the CUL4A/B-RBX1-DDB1-DCAF11 E3 ligase. The tempered α, ß-unsaturated indolinone electrophiles define a drug-like DCAF11-ligand class that enables exploration of this E3 ligase in chemical biology and medicinal chemistry programs. The arylidene-indolinone scaffold frequently occurs in natural products which raises the question whether E3 ligand classes can be found more widely among natural products and related compounds.


Subject(s)
Biological Products , Cullin Proteins , Oxindoles , Ligands , Cullin Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Proteasome Endopeptidase Complex/metabolism , Biological Products/pharmacology , Ubiquitination
12.
Nat Commun ; 14(1): 4504, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587144

ABSTRACT

SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.


Subject(s)
Aptamers, Nucleotide , SMN Complex Proteins , Biomolecular Condensates , Carbocyanines , Nuclear Speckles , Tudor Domain
13.
Cell Chem Biol ; 30(8): 953-964.e9, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37516113

ABSTRACT

Despite being considered druggable and attractive therapeutic targets, most of the solute carrier (SLC) membrane transporters remain pharmacologically underexploited. One of the reasons for this is a lack of reliable chemical screening assays, made difficult by functional redundancies among SLCs. In this study we leveraged synthetic lethality between the lactate transporters SLC16A1 and SLC16A3 in a screening strategy that we call paralog-dependent isogenic cell assay (PARADISO). The system involves five isogenic cell lines, each dependent on various paralog genes for survival/fitness, arranged in a screening cascade tuned for the identification of SLC16A3 inhibitors. We screened a diversity-oriented library of ∼90,000 compounds and further developed our hits into slCeMM1, a paralog-selective and potent SLC16A3 inhibitor. By implementing chemoproteomics, we showed that slCeMM1 is selective also at the proteome-wide level, thus fulfilling an important criterion for chemical probes. This study represents a framework for the development of specific cell-based drug discovery assays.


Subject(s)
Carrier Proteins , Drug Discovery , Membrane Transport Proteins/genetics
14.
J Am Chem Soc ; 145(2): 1176-1184, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36602777

ABSTRACT

Targeted protein degradation (TPD) is a new pharmacology based on small-molecule degraders that induce proximity between a protein of interest (POI) and an E3 ubiquitin ligase. Of the approximately 600 E3s encoded in the human genome, only around 2% can be co-opted with degraders. This underrepresentation is caused by a paucity of discovery approaches to identify degraders for defined E3s. This hampers a rational expansion of the druggable proteome and stymies critical advancements in the field, such as tissue- and cell-specific degradation. Here, we focus on dynamic NEDD8 conjugation, a post-translational, regulatory circuit that controls the activity of 250 cullin RING E3 ligases (CRLs). Leveraging this regulatory layer enabled us to develop a scalable assay to identify compounds that alter the interactome of an E3 of interest by tracing their abundance after pharmacologically induced auto-degradation. Initial validation studies are performed for CRBN and VHL, but proteomics studies indicate broad applicability for many CRLs. Among amenable ligases, we select CRLDCAF15 for a proof-of-concept screen, leading to the identification of a novel DCAF15-dependent molecular glue degrader inducing the degradation of RBM23 and RBM39. Together, this strategy empowers the scalable identification of degraders specific to a ligase of interest.


Subject(s)
Carrier Proteins , Ubiquitin-Protein Ligases , Humans , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/metabolism , Protein Processing, Post-Translational , Proteolysis
15.
J Am Chem Soc ; 145(5): 2711-2732, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36706315

ABSTRACT

Only around 20% of the human proteome is considered to be druggable with small-molecule antagonists. This leaves some of the most compelling therapeutic targets outside the reach of ligand discovery. The concept of targeted protein degradation (TPD) promises to overcome some of these limitations. In brief, TPD is dependent on small molecules that induce the proximity between a protein of interest (POI) and an E3 ubiquitin ligase, causing ubiquitination and degradation of the POI. In this perspective, we want to reflect on current challenges in the field, and discuss how advances in multiomics profiling, artificial intelligence, and machine learning (AI/ML) will be vital in overcoming them. The presented roadmap is discussed in the context of small-molecule degraders but is equally applicable for other emerging proximity-inducing modalities.


Subject(s)
Artificial Intelligence , Multiomics , Proteolysis , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
Nat Chem Biol ; 19(1): 3-4, 2023 01.
Article in English | MEDLINE | ID: mdl-36577874
17.
Nat Chem Biol ; 19(3): 323-333, 2023 03.
Article in English | MEDLINE | ID: mdl-36329119

ABSTRACT

Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined 'functional hotspots'. Understanding disruptive mutations in functional hotspots informs on the architecture of the assembly, and highlights residues susceptible to acquire resistance phenotypes. Here we employ haploid genetics to show that hotspot mutations cluster in substrate receptors of hijacked ligases, where mutation type and frequency correlate with gene essentiality. Intersection with deep mutational scanning revealed hotspots that are conserved or specific for chemically distinct degraders and targets. Biophysical and structural validation suggests that hotspot mutations frequently converge on altered ternary complex assembly. Moreover, we validated hotspots mutated in patients that relapse from degrader treatment. In sum, we present a fast and widely accessible methodology to characterize small-molecule degraders and associated resistance mechanisms.


Subject(s)
Carrier Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Carrier Proteins/metabolism
18.
Cell Rep ; 41(9): 111716, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36400033

ABSTRACT

Polymerase theta (POLθ) is an error-prone DNA polymerase whose loss is synthetically lethal in cancer cells bearing breast cancer susceptibility proteins 1 and 2 (BRCA1/2) mutations. To investigate the basis of this genetic interaction, we utilized a small-molecule inhibitor targeting the POLθ polymerase domain. We found that POLθ processes single-stranded DNA (ssDNA) gaps that emerge in the absence of BRCA1, thus promoting unperturbed replication fork progression and survival of BRCA1 mutant cells. A genome-scale CRISPR-Cas9 knockout screen uncovered suppressors of the functional interaction between POLθ and BRCA1, including NBN, a component of the MRN complex, and cell-cycle regulators such as CDK6. While the MRN complex nucleolytically processes ssDNA gaps, CDK6 promotes cell-cycle progression, thereby exacerbating replication stress, a feature of BRCA1-deficient cells that lack POLθ activity. Thus, ssDNA gap formation, modulated by cell-cycle regulators and MRN complex activity, underlies the synthetic lethality between POLθ and BRCA1, an important insight for clinical trials with POLθ inhibitors.


Subject(s)
DNA, Single-Stranded , Nucleotidyltransferases , DNA, Single-Stranded/genetics , Cell Nucleus , Mutation , Cell Division
19.
Am J Hematol ; 97(9): 1215-1225, 2022 09.
Article in English | MEDLINE | ID: mdl-35794848

ABSTRACT

In most patients with chronic myeloid leukemia (CML) clonal cells can be kept under control by BCR::ABL1 tyrosine kinase inhibitors (TKI). However, overt resistance or intolerance against these TKI may occur. We identified the epigenetic reader BRD4 and its downstream-effector MYC as growth regulators and therapeutic targets in CML cells. BRD4 and MYC were found to be expressed in primary CML cells, CD34+ /CD38- leukemic stem cells (LSC), and in the CML cell lines KU812, K562, KCL22, and KCL22T315I . The BRD4-targeting drug JQ1 was found to suppress proliferation in KU812 cells and primary leukemic cells in the majority of patients with chronic phase CML. In the blast phase of CML, JQ1 was less effective. However, the BRD4 degrader dBET6 was found to block proliferation and/or survival of primary CML cells in all patients tested, including blast phase CML and CML cells exhibiting the T315I variant of BCR::ABL1. Moreover, dBET6 was found to block MYC expression and to synergize with BCR::ABL1 TKI in inhibiting the proliferation in the JQ1-resistant cell line K562. Furthermore, BRD4 degradation was found to overcome osteoblast-induced TKI resistance of CML LSC in a co-culture system and to block interferon-gamma-induced upregulation of the checkpoint antigen PD-L1 in LSC. Finally, dBET6 was found to suppress the in vitro survival of CML LSC and their engraftment in NSG mice. Together, targeting of BRD4 and MYC through BET degradation sensitizes CML cells against BCR::ABL1 TKI and is a potent approach to overcome multiple forms of drug resistance in CML LSC.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Nuclear Proteins , Animals , Blast Crisis/drug therapy , Cell Cycle Proteins , Cell Line, Tumor , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Nuclear Proteins/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-myc , Stem Cells , Transcription Factors/genetics
20.
ChemMedChem ; 16(15): 2417-2423, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34114371

ABSTRACT

The second biannual Alpine Winter Conference on Medicinal and Synthetic Chemistry (short: Alpine Winter Conference) took place January 19-23, 2020, in St. Anton in western Austria. There were roughly 180 attendees from around the globe, making this mid-sized conference particularly conducive to networking and exchanging ideas over the course of four and a half days. This report summarizes the key events and presentations given by researchers working in both industry and academia.


Subject(s)
Chemistry, Pharmaceutical , Research Personnel , Austria , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...