Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Microbiol ; 72(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37962209

ABSTRACT

Introduction. Helicobacter pylori is the leading cause of peptic ulcers and gastric cancer. The most common treatment regimens use combinations of two or three antibiotics and a proton pump inhibitor (PPI) to suppress stomach acid. The World Health Organization designated clarithromycin-resistant H. pylori as a high priority pathogen for drug development, due to increasing antibiotic resistance globally.Hypothesis/Gap Statement. There is no routine surveillance of H. pylori primary antimicrobial sensitivities in the UK, and published data are lacking.Aim. This study aimed to characterize antimicrobial sensitivities of isolates collected in Nottingham, UK, between 2001 and 2018.Methodology. Gastric biopsy samples were collected, with informed written consent and ethics approval, from 162 patients attending the Queen's Medical Centre in Nottingham for an upper GI tract endoscopy. Antibiotic sensitivity was assessed using E-Tests and a more cost-effective disc diffusion test.Results. The clarithromycin, amoxicillin and levofloxacin disc diffusion tests provided identical results to E-Tests on a subset of 30 isolates. Disparities were observed in the metronidazole test results, however. In total, 241 isolates from 162 patients were tested using at least one method. Of all isolates, 28 % were resistant to clarithromycin, 62 % to metronidazole and 3 % to amoxicillin, which are used in first-line therapies. For those antibiotics used in second- and third-line therapies, 4 % were resistant to levofloxacin and none of the isolates were resistant to tetracycline. Resistance to more than one antibiotic was found in 27 % of isolates. The frequency of patients with a clarithromycin-resistant strain increased dramatically over time: from 16 % between 2001 and 2005 to 40 % between 2011 and 2018 (P=0.011). For the same time periods, there was also an increase in those with a metronidazole-resistant strain (from 58 to 78 %; P=0.05). The frequencies of clarithromycin and metronidazole resistance were higher in isolates from patients who had previously received eradication therapy, compared to those who had not (40 % versus 77 %, and 80 % versus 92 %, respectively). Of 79 pairs of isolates from the antrum and corpus regions of the same patient's stomach, only six had differences in their antimicrobial susceptibility profiles.Conclusion. Although there was high and increasing resistance to clarithromycin and metronidazole, there was no resistance to tetracycline and the frequencies of amoxicillin and levofloxacin resistance were very low.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Metronidazole/therapeutic use , Levofloxacin/therapeutic use , Helicobacter Infections/drug therapy , Helicobacter Infections/epidemiology , Incidence , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Tetracycline/pharmacology , Drug Resistance, Microbial , United Kingdom/epidemiology
2.
Gut Microbes ; 14(1): 2152306, 2022.
Article in English | MEDLINE | ID: mdl-36469575

ABSTRACT

Individuals infected with Helicobacter pylori harbor unique and diverse populations of quasispecies, but diversity between and within different regions of the human stomach and the process of bacterial adaptation to each location are not yet well understood. We applied whole-genome deep sequencing to characterize the within- and between-stomach region genetic diversity of H. pylori populations from paired antrum and corpus biopsies of 15 patients, along with single biopsies from one region of an additional 3 patients, by scanning allelic diversity. We combined population deep sequencing with more conventional sequencing of multiple H. pylori single colony isolates from individual biopsies to generate a unique dataset. Single colony isolates were used to validate the scanning allelic diversity pipelines. We detected extensive population allelic diversity within the different regions of each patient's stomach. Diversity was most commonly found within non-coding, hypothetical, outer membrane, restriction modification system, virulence, lipopolysaccharide biosynthesis, efflux systems, and chemotaxis-associated genes. Antrum and corpus populations from the same patient grouped together phylogenetically, indicating that most patients were initially infected with a single strain, which then diversified. Single colonies from the antrum and corpus of the same patients grouped into distinct clades, suggesting mechanisms for within-location adaptation across multiple H. pylori isolates from different patients. The comparisons made available by combined sequencing and analysis of isolates and populations enabled comprehensive analysis of the genetic changes associated with H. pylori diversification and stomach region adaptation.


Subject(s)
Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter Infections/microbiology , Stomach/microbiology , Genomics
3.
J Inflamm Res ; 8: 137-47, 2015.
Article in English | MEDLINE | ID: mdl-26316793

ABSTRACT

The bacterial pathogen Helicobacter pylori commonly colonizes the human gastric mucosa during early childhood and persists throughout life. The organism has evolved multiple mechanisms for evading clearance by the immune system and, despite inducing inflammation in the stomach, the majority of infections are asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer. However, disease outcomes are related to the pattern and severity of chronic inflammation in the gastric mucosa, which in turn is influenced by both bacterial and host factors. Despite over 2 decades of intensive research, there remains an incomplete understanding of the circumstances leading to disease development, due to the fascinating complexity of the host-pathogen interactions. There is accumulating data concerning the virulence factors associated with increased risk of disease, and the majority of these have pro-inflammatory activities. Despite this, only a small proportion of those infected with virulent strains develop disease. Several H. pylori virulence factors have multiple effects on different cell types, including the induction of pro- and anti-inflammatory, immune stimulatory, and immune modulatory responses. The expression of multiple virulence factors is also often linked, making it difficult to assess the meaning of their effects in isolation. Overall, H. pylori is thought to usually modulate inflammation and limit acute damage to the mucosa, enabling the bacteria to persist. If this delicate balance is disturbed, disease may then develop.

SELECTION OF CITATIONS
SEARCH DETAIL
...