Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Plant Biol ; 74: 102370, 2023 08.
Article in English | MEDLINE | ID: mdl-37121154

ABSTRACT

The development of lateral roots starts with a round of anticlinal, asymmetric cell divisions in lateral root founder cells in the pericycle, deep within the root. The reorientation of the cell division plane occurs in parallel with changes in cell shape and needs to be coordinated with its direct neighbor, the endodermis. This accommodation response requires the integration of biochemical and mechanical signals in both cell types. Recently, it was reported that dynamic changes in the cytoskeleton and possibly the cell wall are part of the molecular mechanism required to correctly orient and position the cell division plane. Here we discuss the latest progress made towards our understanding of the regulation of cell shape and division plane orientation underlying lateral root initiation in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Cell Division , Plant Roots/metabolism , Cell Shape , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism
2.
Sci Adv ; 8(6): eabm4974, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35138892

ABSTRACT

Precise coordination between cells and tissues is essential for differential growth in plants. During lateral root formation in Arabidopsis thaliana, the endodermis is actively remodeled to allow outgrowth of the new organ. Here, we show that microtubule arrays facing lateral root founder cells display a higher order compared to arrays on the opposite side of the same cell, and this asymmetry is required for endodermal remodeling and lateral root initiation. We identify that MICROTUBULE ASSOCIATED PROTEIN 70-5 (MAP70-5) is necessary for the establishment of this spatially defined microtubule organization and endodermis remodeling and thus contributes to lateral root morphogenesis. We propose that MAP70-5 and cortical microtubule arrays in the endodermis integrate the mechanical signals generated by lateral root outgrowth, facilitating the channeling of organogenesis.

3.
Plant Physiol ; 186(4): 1859-1877, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34618107

ABSTRACT

Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.


Subject(s)
Aconitate Hydratase/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Mitochondria/metabolism , Transcription Factors/metabolism , Aconitate Hydratase/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism
4.
Plant Physiol ; 182(2): 1161-1181, 2020 02.
Article in English | MEDLINE | ID: mdl-31659127

ABSTRACT

Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Botrytis/immunology , Cellular Senescence/genetics , Disease Resistance/genetics , Plant Diseases/immunology , Plant Leaves/metabolism , Protein Phosphatase 2/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Calcium/metabolism , Cellular Senescence/physiology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Disease Resistance/immunology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Genotype , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Mutation , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Protein Binding , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Phosphatase 2/genetics , Salicylic Acid/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...