Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Waste Manag ; 184: 1-9, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38781721

ABSTRACT

Unavoidable food wastes could be an important feedstock for industrial biotechnology, while their valorization could provide added value for the food processor. However, despite their abundance and low costs, the heterogeneous/mixed nature of these food wastes produced by food processors and consumers leads to a high degree of variability in carbon and nitrogen content, as well as specific substrates, in food waste hydrolysate. This has limited their use for bioproduct synthesis. These wastes are often instead used in anaerobic digestion and mixed microbial culture, creating a significant knowledge gap in their use for higher value biochemical production via pure and single microbial culture. To directly investigate this knowledge gap, various waste streams produced by a single food processor were enzymatically hydrolyzed and characterized, and the degree of variability with regard to substrates, carbon, and nitrogen was quantified. The impact of hydrolysate variability on the viability and performance of polyhydroxyalkanoates biopolymers production using bacteria (Cupriavidus necator) and archaea (Haloferax mediterranei) as well as sophorolipids biosurfactants production with the yeast (Starmerella bombicola) was then elucidated at laboratory-scale. After which, strategies implemented during this experimental proof-of-concept study, and beyond, for improved industrial-scale valorization which addresses the high variability of food waste hydrolysate were discussed in-depth, including media standardization and high non-selective microbial organisms growth-associated product synthesis. The insights provided would be beneficial for future endeavors aiming to utilize food wastes as feedstocks for industrial biotechnology.

2.
Curr Opin Biotechnol ; 85: 103024, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056203

ABSTRACT

Biopolymers produced as microbial carbon storage systems, such as polyhydroxyalkanoates (PHAs), offer potential to be used in place of petrochemically derived plastics. Low-value organic feedstocks, such as food waste, have been explored as a potential substrate for the microbial production of PHAs. In this review, we discuss the biosynthesis, composition and producers of PHAs, with a particular focus on the genetic and process engineering efforts to utilise non-native substrates, derived from food waste from across the entire supply chain, for microbial growth and PHA production. We highlight a series of studies that have achieved impressive advances and discuss the challenges of producing PHAs with consistent composition and properties from mixed and variable food waste and by-products.


Subject(s)
Polyhydroxyalkanoates , Refuse Disposal , Food Loss and Waste , Food , Biopolymers
3.
Bioprocess Biosyst Eng ; 47(1): 119-129, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006410

ABSTRACT

Inulin is a fructose-based polysaccharide that can be found in several plant species, from grass and onions to chicory roots; thus, it has the potential to be an excellent renewable source of fructose for several industrial applications. Among them, inulin hydrolysis can be coupled to a fermentation operation to produce polyhydroxybutyrate (PHB) using Cupriavidus necator H16. This work reports the PHB production process involving chicory root inulin hydrolysis using inulinase Novozym 960 followed by a C. necator fermentation. It was found that the maximum saccharification (95% wt.) was reached at 269 U/ginulin after 90 min. The hydrolysates obtained were then inoculated with C. necator, leading to a biomass concentration of 4 g/L with 30% (w/w) polymer accumulation. Although PHB production was low, during the first hours, the cell growth and polymer accumulation detected did not coincide with a fructose concentration decrease, suggesting a simultaneous saccharification and fermentation process, potentially alleviating the product inhibition inherent to the inulinase-fructose system. The characterization of the obtained PHB showed a polymer with more homogeneous values of Mw, and better thermal stability than PHB produced using pure fructose as a fermentation substrate. The results obtained demonstrate a viable alternative carbon substrate for PHB production, opening the possibility for inulin-rich renewable feedstock valorization.


Subject(s)
Cupriavidus necator , Inulin , Fermentation , Inulin/metabolism , Polyhydroxybutyrates , Fructose , Hydroxybutyrates
4.
Front Bioeng Biotechnol ; 11: 1220271, 2023.
Article in English | MEDLINE | ID: mdl-37781542

ABSTRACT

In this work, the viability of continuous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production with controlled composition in Haloferax mediterranei when fed volatile fatty acids is demonstrated. Continuous fermentations showed to greatly outperform batch fermentations with continuous feeding. Operating the bioreactor continuously allowed for PHBV productivity normalised by cell density to increase from 0.29 to 0.38 mg L-1 h-1, in previous continuously fed-fed batch fermentations, to 0.87 and 1.43 mg L-1 h-1 in a continuous mode of operation for 0.1 and 0.25 M carbon concentrations in the media respectively. Continuous bioreactor experiments were carried out for 100 h, maintaining control over the copolymer composition at around 30 mol% 3-hydroxyvalerate 3HV. This work presents the first continuous production of PHBV in Haloferax mediterranei which continuously delivers polymer at a higher productivity, compared to fed-batch modes of operation. Operating bioreactors continuously whilst maintaining control over copolymer composition brings new processing opportunities for increasing biopolymer production capacity, a crucial step towards the wider industrialisation of polyhydroxyalkanoates (PHAs).

5.
Bioresour Technol ; 386: 129541, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499923

ABSTRACT

Rapeseed meal (RSM) hydrolysate is a potential low-cost feedstock for the production of polyhydroxyalkanoates (PHAs) by the archaea, Haloferax mediterranei. Acidic and enzymatic hydrolysis were carried out to compare effectiveness. Enzymatic hydrolysis is more effective than acidic hydrolysis for fermentation substrate leading to increased PHA productivity. H. mediterranei didn't grow or produce PHA when acid hydrolysed RSM medium was present in proportions greater than 25% (vol.), potentially due to the effect of inhibitors such as furfural, hydroxymethylfurfural (HMF), etc. However, H. mediterranei was able to grow and produce PHA when using enzymatically hydrolysed RSM medium. The maximum PHA concentration of 0.512 g/L was found at 75% (vol.) in enzymatic RSM hydrolysate medium. The biopolymer obtained had improved thermal and mechanical properties compared to PHB homopolymer. RSM's potential as a low-cost alternative feedstock for improved PHA production under non-sterile conditions was successfully demonstrated, and its usage should be further explored.


Subject(s)
Brassica napus , Brassica rapa , Haloferax mediterranei , Polyhydroxyalkanoates , Polyhydroxyalkanoates/metabolism , Brassica napus/metabolism , Haloferax mediterranei/metabolism , Fermentation , Hydrolysis , Brassica rapa/metabolism
6.
Sci Technol Adv Mater ; 23(1): 895-910, 2022.
Article in English | MEDLINE | ID: mdl-36570876

ABSTRACT

The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration. .

7.
Appl Environ Microbiol ; 88(23): e0150922, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36377958

ABSTRACT

The initial growth rate of a yeast strain is a key parameter in the production of fermented beverages. Fast growth is linked with higher fermentative capacity and results in less slow and stuck fermentations unable to reach the expected final gravity. As concentrations of metabolites are in a constant state of flux, quantitative data on how growth rate affects the production of aromatic compounds becomes an important factor for brewers. Chemostats allow to set and keep a specific dilution rate throughout the fermentation and are ideal system to study the effect of growth on aroma production. In this study, we ran chemostats alongside batch and fed-batch cultures, compared volatile profiles detected at different growth rates, and identified those affected by the different feeding profiles. Specifically, we quantified six abundant aroma compounds produced in anaerobic glucose-limited continuous cultivations of S. cerevisiae at different dilution rates. We found that volatile production was affected by the growth rate in four out of six compounds assayed, with higher alcohols and esters following opposite trends. Batch and fed-batch fermentations were devised to study the extent by which the final concentration of volatile compounds is influenced by glucose availability. Compared with the batch system, fed-batch fermentations, where the yeast growth was artificially limited by a slow constant release of nutrients in the media, resulted in a significant increase in concentration of higher alcohols, mirroring the results obtained in continuous fermentations. This study paves the way to further process development optimization for the production of fermented beverages. IMPORTANCE The production of fermentation beverages will need to quickly adapt to changes in both the climate and customer demands, requiring the development of new strains and processes. Breakthroughs in the field are hindered by the limited knowledge on the interplay between physiology and aroma compound production in yeast. No quantitative data on how growth rate affects aroma profile is available in the literature to guide optimization of the complex flavors in fermented beverages. In this study, we exploited the chemostat system, alongside with batch and fed-batch cultures, to compare volatile profiles at different growth rates. We identified the aromatic compounds affected by the different feeding profiles and nutrient limitations. Moreover, we uncovered the correlation between yeast growth, esters, and higher alcohols production. This study showcases the potential of the application of feeding profiles for the manipulation of aroma in the craft beverage industry.


Subject(s)
Saccharomyces cerevisiae , Volatile Organic Compounds , Saccharomyces cerevisiae/metabolism , Odorants , Fermentation , Batch Cell Culture Techniques , Alcohols/metabolism , Glucose/metabolism , Volatile Organic Compounds/metabolism
8.
Appl Microbiol Biotechnol ; 106(18): 6033-6045, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36028634

ABSTRACT

Spent coffee ground (SCG) oil is an ideal substrate for the biosynthesis of polyhydroxyalkanoates (PHAs) by Cupriavidus necator. The immiscibility of lipids with water limits their bioavailability, but this can be resolved by saponifying the oil with potassium hydroxide to form water-soluble fatty acid potassium salts and glycerol. Total saponification was achieved with 0.5 mol/L of KOH at 50 °C for 90 min. The relationship between the initial carbon substrate concentration (C0) and the specific growth rate (µ) of C. necator DSM 545 was evaluated in shake flask cultivations; crude and saponified SCG oils were supplied at matching initial carbon concentrations (C0 = 2.9-23.0 g/L). The Han-Levenspiel model provided the closest fit to the experimental data and accurately described complete growth inhibition at 32.9 g/L (C0 = 19.1 g/L) saponified SCG oil. Peak µ-values of 0.139 h-1 and 0.145 h-1 were obtained with 11.99 g/L crude and 17.40 g/L saponified SCG oil, respectively. Further improvement to biomass production was achieved by mixing the crude and saponified substrates together in a carbon ratio of 75:25% (w/w), respectively. In bioreactors, C. necator initially grew faster on the mixed substrates (µ = 0.35 h-1) than on the crude SCG oil (µ = 0.23 h-1). After harvesting, cells grown on crude SCG oil obtained a total biomass concentration of 7.8 g/L and contained 77.8% (w/w) PHA, whereas cells grown on the mixed substrates produced 8.5 g/L of total biomass and accumulated 84.4% (w/w) of PHA. KEY POINTS: • The bioavailability of plant oil substrates can be improved via saponification. • Cell growth and inhibition were accurately described by the Han-Levenpsiel model. • Mixing crude and saponified oils enable variation of free fatty acid content.


Subject(s)
Cupriavidus necator , Polyhydroxyalkanoates , 3-Hydroxybutyric Acid , Carbon , Coffee/chemistry , Hydroxybutyrates , Oils , Polyesters , Water
9.
Metab Eng ; 72: 325-336, 2022 07.
Article in English | MEDLINE | ID: mdl-35513297

ABSTRACT

Ligand-induced system plays an important role for microbial engineering due to its tunable gene expression control over timings and levels. An oleic acid (OA)-induced system was recently constructed based on protein FadR, a transcriptional regulator involved in fatty acids metabolism, for metabolic control in Escherichia coli. In this study, we constructed a synthetic FadR-based OA-induced systems in Halomonas bluephagenesis by hybridizing the porin promoter core region and FadR-binding operator (fadO). The dynamic control range was optimized over 150-fold, and expression leakage was significantly reduced by tuning FadR expression and positioning fadO, forming a series of OA-induced systems with various expression strengths, respectively. Additionally, ligand orthogonality and cross-species portability were also studied and showed highly linear correlation among Halomonas spp., Escherichia coli and Pseudomonas spp. Finally, OA-induced systems with medium- and small-dynamic control ranges were employed to dynamically control the expression levels of morphology associated gene minCD, and monomer precursor 4-hydroxybutyrate-CoA (4HB-CoA) synthesis pathway for polyhydroxyalkanoates (PHA), respectively, in the presence of oleic acid as an inducer. As a result, over 10 g/L of poly-3-hydroxybutyrate (PHB) accumulated by elongated cell sizes, and 6 g/L of P(3HB-co-9.57 mol% 4HB) were obtained by controlling the dose and induction time of oleic acid only. This study provides a systematic approach for ligand-induced system engineering, and demonstrates an alternative genetic tool for dynamic control of industrial biotechnology.


Subject(s)
Halomonas , Polyhydroxyalkanoates , Coenzyme A/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Halomonas/genetics , Halomonas/metabolism , Ligands , Metabolic Engineering , Oleic Acid/metabolism , Polyesters/metabolism , Polyhydroxyalkanoates/genetics , Pseudomonas/genetics , Pseudomonas/metabolism
10.
Microb Biotechnol ; 15(6): 1744-1761, 2022 06.
Article in English | MEDLINE | ID: mdl-35038384

ABSTRACT

A key barrier to market penetration for sophorolipid biosurfactants is the ability to improve productivity and utilize alternative feedstocks to reduce the cost of production. To do this, a suitable screening tool is required that is able to model the interactions between media components and alter conditions to maximize productivity. In the following work, a central composite design is applied to analyse the effects of altering glucose, rapeseed oil, corn steep liquor and ammonium sulphate concentrations on sophorolipid production with Starmerella bombicola ATCC 222144 after 168 h. Sophorolipid production was analysed using standard least squares regression and the findings related to the growth (OD600 ) and broth conditions (glucose, glycerol and oil concentration). An optimum media composition was found that was capable of producing 39.5 g l-1 sophorolipid. Nitrogen and rapeseed oil sources were found to be significant, linked to their role in growth and substrate supply respectively. Glucose did not demonstrate a significant effect on production despite its importance to biosynthesis and its depletion in the broth within 96 h, instead being replaced by glycerol (via triglyceride breakdown) as the hydrophilic carbon source at the point of glucose depletion. A large dataset was obtained, and a regression model with applications towards substrate screening and process optimisation developed.


Subject(s)
Glycerol , Oleic Acids , Culture Media , Glucose/metabolism , Glycolipids , Rapeseed Oil
11.
Polymers (Basel) ; 13(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502878

ABSTRACT

In this work, water hyacinths, bagasse and rice straw were valorized to produce an innovative biopolymer. Serial steps of extraction, bleaching and conversion of cellulose to be carboxymethylcellulose (CMC) as well as the last steps of blending and molding were performed. The CMC was mixed with tapioca starch solution by a ratio of 9:18, and a plastic sizer of glycerol was varied at 2%, 4% and 6% by volume. In addition, bioplastic sheets were further determined in their properties and biodegradation. The results revealed that bioplastics with 6% glycerol showed a high moisture content of 23% and water solubility was increased by about 47.94% over 24 h. The effect of temperature on bioplastic stability was found in the ranges of 146.28-169.25 °C. Furthermore, bioplastic sheets with 2% glycerol could maintain their shape. Moreover, for texture analysis, the highest elastic texture in the range of 33.74-38.68% with 6% glycerol was used. Moreover, bioplastics were then tested for their biodegradation by landfill method. Under natural conditions, they degraded at about 10.75% by weight over 24 h after burying in 10 cm soil depth. After 144 h, bioplastics were completely decomposed. Successfully, the application of water, weed and agricultural wastes as raw materials to produce innovative bioplastic showed maximum benefits for an environmentally friendly product, which could also be a guideline for an alternative to replace synthetic plastics derived from petroleum.

12.
Waste Manag ; 128: 221-231, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34000692

ABSTRACT

Expanding the use of tropical biomass wastes for nitrogen-limited fermentation was investigated, specifically, the production of medium chain length polyhydroxyalkanoates. Comprehensive central composite design was conducted to assess pH, temperature, biomass solid loading, cellulase loading and amylase loading and their impact on the hydrolysis of palm, coconut and cassava wastes. Glucose yields of 33.3, 31.7 and 79.0% wt. with respect to total glucose were found for palm, coconut and cassava, respectively. Importantly, the impact on the total nitrogen derived during enzymatic hydrolysis of these tropical biomass was described for the first time. The level of nitrogen needs to be properly controlled as high nitrogen would result in low carbon to nitrogen ratio leading to low polyhydroxyalkanoates accumulation, but low nitrogen would hinder growth of the biopolymer producer. Maximum hydrolysate nitrogen, were 1.80, 1.55 and 0.871 g/l for palm, coconut and cassava, respectively. Using the surface responses, biomass media designed for high carbon-to-nitrogen were produced and validated using Pseudomonas putida. Low glucose-carbon to nitrogen were found for palm and coconut after scale-up, leading to the majority of their polyhydroxyalkanoates not being biomass-derived. However, cassava-derived biopolymers were successfully accumulated at 9.01 and 7.13% wt. for total medium chain length polyhydroxyalkanoates and 10-carbon polyhydroxyalkanoates, respectively. This study provides an important foundation for the expansion of tropical biomass wastes for biopolymer production and other nitrogen-limited applications in general.


Subject(s)
Polyhydroxyalkanoates , Biomass , Carbon , Hydrolysis , Nitrogen
13.
N Biotechnol ; 60: 12-19, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-32846214

ABSTRACT

Oil extracted from spent coffee grounds (SCG) [yield 16.8 % (w/w)] was discovered to be a highly suitable carbon substrate for the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3 HV)] copolymers by Cupriavidus necator DSM 545 in the absence of any traditional 3 HV precursors. Cells cultivated in a 3 L bioreactor (batch) reached a total biomass concentration of 8.9 g L-1 with a P(3HB-co-3 HV) (6.8 mol% 3 HV) content of 89.6 % (w/w). In contrast, cells grown on sunflower oil reached a total biomass concentration of 9.4 gL-1 with a P(3HB-co-3 HV) (0.2 mol% 3 HV) content of 88.1 % (w/w). It is proposed that the organism could synthesize 3 HV monomers from succinyl CoA, an intermediate of the tricarboxylic acid (TCA) cycle, via the succinate-propionate metabolic pathway.


Subject(s)
Coffee/chemistry , Cupriavidus necator/metabolism , Oils/chemistry , Polyesters/metabolism , Coffee/metabolism , Cupriavidus necator/chemistry , Molecular Structure , Oils/isolation & purification , Oils/metabolism , Polyesters/chemistry
14.
Waste Manag ; 105: 482-491, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32143144

ABSTRACT

Rapeseed meal (RSM) is a candidate for biopolymer production due to its abundance, low cost and potential integration with other rapeseed-derived products. However, existing studies pursuing such schemes are limited. The feasibility of different strategies for RSM valorization via protein extraction and polyhydroxyalkanoate production were evaluated. Nitrogen-limited RSM media was produced from hydrolysis of residues which had undergone extensive protein extraction using sodium hydroxide. A study of oxygen-limited fermentation was also performed on hydrolysate of untreated RSM via batch feeding. The typical strategy of using a high carbon-to-nitrogen ratio may not be the most suitable route for polyhydroxyalkanoate (PHA) production using nitrogen-rich biomass as a feedstock. Central composite design-based experiments show that due to mass transfer limitations protein extraction at 1-L scale could only achieve yields around 50% and 69%, at room temperature and 60 °C, respectively. Protein extraction yields reduced with successive extractions, meaning that whilst the RSM hydrolysate is viable for growth, designing a valorization scheme which has the fermentation step dictated by the protein extraction may not be practical/economical. A better route which utilizes oxygen-limitation to initially induce stationary phase was identified, giving accumulation of polyhydroxyalkanoate once the oxygen levels began to recover; 8.93% and 1.75% PHA accumulation in fed-batch cultures of synthetic and RSM media, respectively. The findings demonstrate that decoupling of protein extraction performance from PHA synthesis is feasible. This study provides important insight into the degrees of freedom available in the design of a holistic valorization scheme of rapeseed meal, and high protein lignocellulosic biomass in general.


Subject(s)
Brassica napus , Polyhydroxyalkanoates , Pseudomonas putida , Biomass , Bioreactors , Fermentation , Nitrogen , Oxygen
15.
MethodsX ; 6: 2838-2844, 2019.
Article in English | MEDLINE | ID: mdl-31871917

ABSTRACT

Typically, sludge palm oil (SPO) which discharged from the palm oil refining process, is a low cost material of potential value, due to its high free fatty acid content. Accordingly, there is potential for upgrading low grade oil into valuable biofuel. In this work, we present a novel method for biodiesel production from SPO. The process consists of two steps (i) free fatty acid (FFA) extraction (ii) enzymatic esterification. Firstly, SPO was saponified by hydroalcoholic solution into soap and glycerol. Secondly, the FFAs obtained were further converted into biodiesel via enzymatic esterification catalyzed by immobilised alginate-PVA lipase beads. •Biodiesel production from sludge palm oil could be completed.•A modified fatty acid extraction was used for SPO fatty acid preparation.•Immobilised alginate-PVA lipase beads were used as biocatalyst for esterification reaction.

16.
Appl Microbiol Biotechnol ; 103(3): 1095-1114, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30560452

ABSTRACT

Carotenoids are a group of isoprenoid pigments naturally synthesized by plants and microorganisms, which are applied industrially in food, cosmetic, and pharmaceutical product formulations. In addition to their use as coloring agents, carotenoids have been proposed as health additives, being able to prevent cancer, macular degradation, and cataracts. Moreover, carotenoids may also protect cells against oxidative damage, acting as an antioxidant agent. Considering the interest in greener and sustainable industrial processing, the search for natural carotenoids has increased over the last few decades. In particular, it has been suggested that the use of bioprocessing technologies can improve carotenoid production yields or, as a minimum, increase the efficiency of currently used production processes. Thus, this review provides a short but comprehensive overview of the recent biotechnological developments in carotenoid production using microorganisms. The hot topics in the field are properly addressed, from carotenoid biosynthesis to the current technologies involved in their extraction, and even highlighting the recent advances in the marketing and application of "microbial" carotenoids. It is expected that this review will improve the knowledge and understanding of the most appropriate and economic strategies for a biotechnological production of carotenoids.


Subject(s)
Bacteria/metabolism , Biotechnology/methods , Carotenoids/biosynthesis , Fungi/metabolism , Microalgae/metabolism , Antioxidants/pharmacology , Carotenoids/pharmacology
17.
Biomacromolecules ; 19(3): 996-1005, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29360344

ABSTRACT

Volatile fatty acids (VFA) C2:0 to C6:0 were used as the sole carbon source for poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) production with controllable composition and microstructure in Haloferax mediterranei. Feeding carbon-even VFA gave >90 mol % poly(3-hydroxybutyrate) (3HB) PHBV, while carbon-odd VFA generated >87 mol % poly(3-hydroxyvalerate) (3HV) PHBV. Bespoke random, block, and blend copolymers with 0-100 mol % 3HV were synthesized using C4:0/C5:0 mixtures. The copolymer 3HV fraction is proportional to the %C5:0 in the feed mixture, allowing control over copolymer composition. Microstructure depends on the substrate addition order: cofeeding generated random copolymers, while sequential feeding created block and blend copolymers. On average, the PHBV had an ultrahigh molecular weight of 3 × 106 g/mol. 3HV rich copolymers showed lower melting temperatures, enhanced elasticity, and ductility. H. mediterranei is ideal for large-scale production of PHBV due to its inherent bioprocessing advantages, while control over the composition and microstructure of PHBV will facilitate the production of biopolymers capable of meeting industrial criteria for specific applications.


Subject(s)
Haloferax mediterranei/metabolism , Polyhydroxyalkanoates/biosynthesis , Polyhydroxyalkanoates/chemistry , Haloferax mediterranei/genetics , Polyhydroxyalkanoates/genetics
18.
Extremophiles ; 21(6): 1037-1047, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28988336

ABSTRACT

The extreme haloarchaea Haloferax mediterranei accumulates poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) without the need for specific precursors. In this study, growth kinetics and PHBV synthesis were characterised under nitrogen-excess and nitrogen-limiting conditions in ammonium and, for the first time, nitrate. With excess nitrogen, ammonium and nitrate cultures generated 10.7 g/L biomass containing 4.6 wt% PHBV and 5.6 g/L biomass with 9.3 wt% PHBV, respectively. Copolymer composition varied with the nitrogen source used: PHBV from ammonium cultures had 16.9 mol% 3-hydroxyvalerate (HV), while PHBV from nitrate cultures contained 12.5 mol% HV. Nitrogen limitation was achieved with carbon-to-nitrogen (C/N) molar ratios of 25 or higher. Nitrogen limitation reduced biomass generation and polymer concentration, but polymer accumulation increased to 6.6 and 9.4% for ammonium and nitrate, respectively, with C/N 42. PHBV composition was also affected and cultures with lower C/N ratios produced richer HV polymers. Copolymer formation was not a uniform process: HV was only detected after a minimum accumulation of 0.45 g/L PHB and lasted for a maximum of 48 h. The understanding of copolymer synthesis and the influence of culture conditions such as the nitrogen source will help in designing novel strategies for the production of PHBV with more regular structure and material properties.


Subject(s)
Haloferax mediterranei/metabolism , Industrial Microbiology/methods , Nitrogen/metabolism , Polyesters/metabolism , Ammonium Compounds/metabolism , Biomass , Carbon/metabolism , Fermentation , Pentanoic Acids/metabolism , Polyesters/chemistry
19.
Bioresour Technol ; 225: 99-105, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27888734

ABSTRACT

In this research we assess the feasibility of using palm oil agricultural refinery waste as a carbon source for the production of rhamnolipid biosurfactant through fermentation. The production and characterization of rhamnolipid produced by Pseudomonas aeruginosa PAO1 grown on palm fatty acid distillate (PFAD) under batch fermentation were investigated. Results show that P. aeruginosa PAO1 can grow and produce 0.43gL-1 of rhamnolipid using PFAD as the sole carbon source. Identification of the biosurfactant product using mass spectrometry confirmed the presence of monorhamnolipid and dirhamnolipid. The rhamnolipid produced from PFAD were able to reduce surface tension to 29mNm-1 with a critical micelle concentration (CMC) 420mgL-1 and emulsify kerosene and sunflower oil, with an emulsion index up to 30%. Results demonstrate that PFAD could be used as a low-cost substrate for rhamnolipid production, utilizing and transforming it into a value added biosurfactant product.


Subject(s)
Biotechnology/methods , Glycolipids/biosynthesis , Plant Oils , Pseudomonas aeruginosa/metabolism , Surface-Active Agents/chemistry , Carbon/metabolism , Emulsions/chemistry , Fatty Acids/chemistry , Fatty Acids/metabolism , Fermentation , Food-Processing Industry , Glycolipids/chemistry , Glycolipids/metabolism , Industrial Waste , Kerosene , Mass Spectrometry/methods , Micelles , Palm Oil , Plant Oils/chemistry , Sunflower Oil , Surface Tension , Surface-Active Agents/metabolism
20.
Int J Biol Macromol ; 91: 174-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27211298

ABSTRACT

There are several possible uses of the Class II hydrophobin HFBII in clinical applications. To fully understand and exploit this potential however, the antioxidant activity and ACE-inhibitory potential of this protein need to be better understood and have not been previously reported. In this study, the Class II hydrophobin HFBII was produced by the cultivation of wild type Trichoderma reesei. The crude hydrophobin extract obtained from the fermentation process was purified using reversed-phase liquid chromatography and the identity of the purified HFBII verified by MALDI-TOF (molecular weight: 7.2kDa). Subsequently the antioxidant activities of different concentrations of HFBII (0.01-0.40mg/mL) were determined. The results show that for HFBII concentrations of 0.04mg/mL and upwards the protein significantly reduced the presence of ABTS(+) radicals in the medium, the IC50 value found to be 0.13mg/mL. Computational modeling highlighted the role of the amino acid residues located in the conserved and exposed hydrophobic patch on the surface of the HFBII molecule and the interactions with the aromatic rings of ABTS. The ACE-inhibitory effect of HFBII was found to occur from 0.5mg/mL and upwards, making the combination of HFBII with strong ACE-inhibitors attractive for use in the healthcare industry.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/chemistry , Trichoderma/chemistry , Animals , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...