Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 98 Suppl 1: S29-35, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17922955

ABSTRACT

Adequate intakes of micronutrients are required for the immune system to function efficiently. Micronutrient deficiency suppresses immunity by affecting innate, T cell mediated and adaptive antibody responses, leading to dysregulation of the balanced host response. This situation increases susceptibility to infections, with increased morbidity and mortality. In turn, infections aggravate micronutrient deficiencies by reducing nutrient intake, increasing losses, and interfering with utilization by altering metabolic pathways. Insufficient intake of micronutrients occurs in people with eating disorders, in smokers (active and passive), in individuals with chronic alcohol abuse, in certain diseases, during pregnancy and lactation, and in the elderly. This paper summarises the roles of selected vitamins and trace elements in immune function. Micronutrients contribute to the body's natural defences on three levels by supporting physical barriers (skin/mucosa), cellular immunity and antibody production. Vitamins A, C, E and the trace element zinc assist in enhancing the skin barrier function. The vitamins A, B6, B12, C, D, E and folic acid and the trace elements iron, zinc, copper and selenium work in synergy to support the protective activities of the immune cells. Finally, all these micronutrients, with the exception of vitamin C and iron, are essential for antibody production. Overall, inadequate intake and status of these vitamins and trace elements may lead to suppressed immunity, which predisposes to infections and aggravates malnutrition. Therefore, supplementation with these selected micronutrients can support the body's natural defence system by enhancing all three levels of immunity.


Subject(s)
Immunocompetence/physiology , Trace Elements/immunology , Vitamins/immunology , Antibody Formation/physiology , Avitaminosis/immunology , Humans , Immunity, Cellular/physiology , Trace Elements/deficiency
2.
Ann Nutr Metab ; 51(4): 301-23, 2007.
Article in English | MEDLINE | ID: mdl-17726308

ABSTRACT

Adequate intakes of vitamins and trace elements are required for the immune system to function efficiently. Micronutrient deficiency suppresses immune functions by affecting the innate T-cell-mediated immune response and adaptive antibody response, and leads to dysregulation of the balanced host response. This increases the susceptibility to infections, with increased morbidity and mortality. In turn, infections aggravate micronutrient deficiencies by reducing nutrient intake, increasing losses, and interfering with utilization by altering metabolic pathways. Insufficient intake of micronutrients occurs in people with eating disorders, in smokers (both active and passive), in individuals with chronic alcohol abuse, in patients with certain diseases, during pregnancy and lactation, and in the elderly. With aging a variety of changes are observed in the immune system, which translate into less effective innate and adaptive immune responses and increased susceptibility to infections. Antioxidant vitamins and trace elements (vitamins C, E, selenium, copper, and zinc) counteract potential damage caused by reactive oxygen species to cellular tissues and modulate immune cell function through regulation of redox-sensitive transcription factors and affect production of cytokines and prostaglandins. Adequate intake of vitamins B(6), folate, B(12), C, E, and of selenium, zinc, copper, and iron supports a Th1 cytokine-mediated immune response with sufficient production of proinflammatory cytokines, which maintains an effective immune response and avoids a shift to an anti-inflammatory Th2 cell-mediated immune response and an increased risk of extracellular infections. Supplementation with these micronutrients reverses the Th2 cell-mediated immune response to a proinflammatory Th1 cytokine-regulated response with enhanced innate immunity. Vitamins A and D play important roles in both cell-mediated and humoral antibody response and support a Th2-mediated anti-inflammatory cytokine profile. Vitamin A deficiency impairs both innate immunity (mucosal epithelial regeneration) and adaptive immune response to infection resulting in an impaired ability to counteract extracellular pathogens. Vitamin D deficiency is correlated with a higher susceptibility to infections due to impaired localized innate immunity and defects in antigen-specific cellular immune response. Overall, inadequate intake and status of these vitamins and minerals may lead to suppressed immunity, which predisposes to infections and aggravates malnutrition.


Subject(s)
Immune System/drug effects , Immune System/physiology , Nutritional Physiological Phenomena , Trace Elements/pharmacology , Vitamins/pharmacology , Avitaminosis/complications , Cytokines/immunology , Disease Susceptibility , Humans , Trace Elements/deficiency
3.
Ann Nutr Metab ; 50(2): 85-94, 2006.
Article in English | MEDLINE | ID: mdl-16373990

ABSTRACT

Vitamin C concentrations in the plasma and leukocytes rapidly decline during infections and stress. Supplementation of vitamin C was found to improve components of the human immune system such as antimicrobial and natural killer cell activities, lymphocyte proliferation, chemotaxis, and delayed-type hypersensitivity. Vitamin C contributes to maintaining the redox integrity of cells and thereby protects them against reactive oxygen species generated during the respiratory burst and in the inflammatory response. Likewise, zinc undernutrition or deficiency was shown to impair cellular mediators of innate immunity such as phagocytosis, natural killer cell activity, and the generation of oxidative burst. Therefore, both nutrients play important roles in immune function and the modulation of host resistance to infectious agents, reducing the risk, severity, and duration of infectious diseases. This is of special importance in populations in which insufficient intake of these nutrients is prevalent. In the developing world, this is the case in low- and middle-income countries, but also in subpopulations in industrialized countries, e.g. in the elderly. A large number of randomized controlled intervention trials with intakes of up to 1 g of vitamin C and up to 30 mg of zinc are available. These trials document that adequate intakes of vitamin C and zinc ameliorate symptoms and shorten the duration of respiratory tract infections including the common cold. Furthermore, vitamin C and zinc reduce the incidence and improve the outcome of pneumonia, malaria, and diarrhea infections, especially in children in developing countries.


Subject(s)
Antioxidants/physiology , Ascorbic Acid/physiology , Immune System/physiology , Infection Control , Inflammation/metabolism , Zinc/physiology , Humans , Immunity, Active , Immunity, Innate , Inflammation/prevention & control , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...