Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Haematologica ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38152053

ABSTRACT

Mutations in five canonical Ras pathway genes (NF1, NRAS, KRAS, PTPN11 and CBL) are detected in nearly 90% of patients with juvenile myelomonocytic leukemia (JMML), a frequently fatal malignant neoplasm of early childhood. In this report, we describe seven patients diagnosed with SH2B3-mutated JMML, including five patients who were found to have initiating, loss of function mutations in the gene. SH2B3 encodes the adaptor protein LNK, a negative regulator of normal hematopoiesis upstream of the Ras pathway. These mutations were identified to be germline, somatic or a combination of both. Loss of function of LNK, which has been observed in other myeloid malignancies, results in abnormal proliferation of hematopoietic cells due to cytokine hypersensitivity and activation of the JAK/STAT signaling pathway. In vitro studies of induced pluripotent stem cell-derived JMML-like hematopoietic progenitor cells (HPCs) also demonstrated sensitivity of SH2B3- mutated HPCs to JAK inhibition. Lastly, we describe two patients with JMML and SH2B3 mutations who were treated with the JAK1/2 inhibitor ruxolitinib. This report expands the spectrum of initiating mutations in JMML and raises the possibility of targeting the JAK/STAT pathway in patients with SH2B3 mutations.

2.
Transplant Cell Ther ; 29(6): 391.e1-391.e7, 2023 06.
Article in English | MEDLINE | ID: mdl-36934995

ABSTRACT

Human adenovirus (HAdV) infection is a serious complication that can lead to significant morbidity and mortality, especially in immunocompromised pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Control and elimination of HAdV requires the presence of the respective antiviral T cells, and adoptive transfer of virus-specific T cells has become an important new treatment option for patients refractory to antiviral treatment. Although the adenoviral capsid protein hexon is known to be a major immunodominant T cell target across HAdV species, up to 30% of HAdV-seropositive donors show no T cell responses to the overlapping peptide pool spanning the entire protein. Our group recently verified the capsid protein penton as a second immunodominant target in HAdV infection. Here we aimed to investigate the prevalence of both penton-specific and hexon-specific HAdV T cells and their impact in virus control after HSCT. We analyzed the prevalence and characteristics of HAdV-specific T cells in 33 consecutive pediatric patients with HAdV reactivation following allogeneic HSCT and correlated them with viral load analysis. Our study demonstrates that penton is an important immunodominant target antigen of HAdV reactivation/ infection after HSCT in most patients. We demonstrate that in the majority of patients, both penton- and hexon-specific T cells appear at similar time intervals after transplantation. Despite the prevalence for either hexon-specific or penton-specific T cells in individual patients, we were unable to attribute the predominance to specific HLA types or HAdV serotypes. The occurrence of HAdV-specific T cells was closely linked to viral control, arguing for immune monitoring strategies to tailor antiviral treatment and adoptive T cell therapy.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Hematopoietic Stem Cell Transplantation , Humans , Child , Capsid Proteins , T-Lymphocytes , Adenoviridae , Hematopoietic Stem Cell Transplantation/adverse effects , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/etiology , Antiviral Agents
3.
J Exp Clin Cancer Res ; 42(1): 21, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36639636

ABSTRACT

BACKGROUND: Characterization of clinical phenotypes in context with tumor and host genomic information can aid in the development of more effective and less toxic risk-adapted and targeted treatment strategies. To analyze the impact of therapy-related hyperbilirubinemia on treatment outcome and to identify contributing genetic risk factors of this well-recognized adverse effect we evaluated serum bilirubin levels in 1547 pediatric patients with acute lymphoblastic leukemia (ALL) and conducted a genome-wide association study (GWAS). PATIENTS AND METHODS: Patients were treated in multicenter trial AIEOP-BFM ALL 2000 for pediatric ALL. Bilirubin toxicity was graded 0 to 4 according to the Common Toxicity Criteria (CTC) of the National Cancer Institute. In the GWAS discovery cohort, including 650 of the 1547 individuals, genotype frequencies of 745,895 single nucleotide variants were compared between 435 patients with hyperbilirubinemia (CTC grades 1-4) during induction/consolidation treatment and 215 patients without it (grade 0). Replication analyses included 224 patients from the same trial. RESULTS: Compared to patients with no (grade 0) or moderate hyperbilirubinemia (grades 1-2) during induction/consolidation, patients with grades 3-4 had a poorer 5-year event free survival (76.6 ± 3% versus 87.7 ± 1% for grades 1-2, P = 0.003; 85.2 ± 2% for grade 0, P < 0.001) and a higher cumulative incidence of relapse (15.6 ± 3% versus 9.0 ± 1% for grades 1-2, P = 0.08; 11.1 ± 1% for grade 0, P = 0.007). GWAS identified a strong association of the rs6744284 variant T allele in the UGT1A gene cluster with risk of hyperbilirubinemia (allelic odds ratio (OR) = 2.1, P = 7 × 10- 8). TT-homozygotes had a 6.5-fold increased risk of hyperbilirubinemia (grades 1-4; 95% confidence interval (CI) = 2.9-14.6, P = 7 × 10- 6) and a 16.4-fold higher risk of grade 3-4 hyperbilirubinemia (95% CI 6.1-43.8, P = 2 × 10- 8). Replication analyses confirmed these associations with joint analysis yielding genome-wide significance (allelic OR = 2.1, P = 6 × 10- 11; 95% CI 1.7-2.7). Moreover, rs6744284 genotypes were strongly linked to the Gilbert's syndrome-associated UGT1A1*28/*37 allele (r2 = 0.70), providing functional support for study findings. Of clinical importance, the rs6744284 TT genotype counterbalanced the adverse prognostic impact of high hyperbilirubinemia on therapy outcome. CONCLUSIONS: Chemotherapy-related hyperbilirubinemia is a prognostic factor for treatment outcome in pediatric ALL and genetic variation in UGT1A aids in predicting the clinical impact of hyperbilirubinemia. TRIAL REGISTRATION: http://www. CLINICALTRIALS: gov ; #NCT00430118.


Subject(s)
Genome-Wide Association Study , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Bilirubin/therapeutic use , Hyperbilirubinemia/chemically induced , Hyperbilirubinemia/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Treatment Outcome , Child
5.
Pediatr Blood Cancer ; 69(5): e29499, 2022 05.
Article in English | MEDLINE | ID: mdl-34939322

ABSTRACT

Therapy-related myeloid neoplasms (t-MN) are a distinct subgroup of myeloid malignancies with a poor prognosis that include cases of therapy-related myelodysplastic syndrome (t-MDS), therapy-related myeloproliferative neoplasms (t-MPN) and therapy-related acute myeloid leukemia (t-AML). Here, we report a series of patients with clinical features consistent with juvenile myelomonocytic leukemia (JMML), an overlap syndrome of MDS and myeloproliferative neoplasms that developed after treatment for another malignancy.


Subject(s)
Leukemia, Myelomonocytic, Juvenile , Myelodysplastic Syndromes , Myeloproliferative Disorders , Neoplasms, Second Primary , Humans , Leukemia, Myelomonocytic, Juvenile/diagnosis , Leukemia, Myelomonocytic, Juvenile/therapy , Myelodysplastic Syndromes/chemically induced , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/therapy , Neoplasms, Second Primary/diagnosis
6.
Blood Adv ; 5(22): 4783-4793, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34525182

ABSTRACT

Juvenile myelomonocytic leukemia is an overlapping myeloproliferative and myelodysplastic disorder of early childhood . It is associated with a spectrum of diverse outcomes ranging from spontaneous resolution in rare patients to transformation to acute myeloid leukemia in others that is generally fatal. This unpredictable clinical course, along with initially descriptive diagnostic criteria, led to decades of productive international research. Next-generation sequencing now permits more accurate molecular diagnoses in nearly all patients. However, curative treatment is still reliant on allogeneic hematopoietic cell transplantation for most patients, and additional advances will be required to improve risk stratification algorithms that distinguish those that can be observed expectantly from others who require swift hematopoietic cell transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Leukemia, Myelomonocytic, Juvenile , Child, Preschool , Humans , Leukemia, Myelomonocytic, Juvenile/diagnosis , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/therapy , Mutation , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...