Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Vaccine ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38918102

ABSTRACT

Pneumococcal conjugate vaccines (PCV) typically consist of capsular polysaccharides from different S. pneumoniae serotypes which are covalently attached to carrier protein. A well-established process to manufacture PCV is through activating polysaccharide by oxidation of vicinal diols to aldehydes, followed by protein conjugation via reductive amination. Polysaccharide activation is a crucial step that affects vaccine product critical attributes including conjugate size and structure. Therefore, it is highly desired to have robust analytical methods to well characterize this activation process. In this study, using pneumococcal serotype 6A as the model, we present two complimentary analytical methods for characterization of activated polysaccharide. First, a size exclusion chromatography (SEC) method was developed for quantitative measurement of polysaccharide activation levels. This SEC method demonstrated good assay characteristics on accuracy, precision and linearity. Second, a gold nanoparticle labeled cryo-electron microscopy (Cryo-EM) technique was developed to visualize activation site distribution along polysaccharide chain and provide information on activation heterogeneity. These two complimentary methods can be utilized to control polysaccharide activation process and ensure consistent delivery of conjugate vaccine products.

2.
Article in English | MEDLINE | ID: mdl-38826135

ABSTRACT

Extranuclear localization of long non-coding RNAs (lncRNAs) is poorly understood. Based on machine learning evaluations, we propose a lncRNA-mitochondrial interaction pathway where Polynucleotide Phosphorylase (PNPase), through domains that provide specificity for primary sequence and secondary structure, binds nuclear-encoded lncRNAs to facilitate mitochondrial import. Using FVB/NJ mouse and human cardiac tissues, RNA from isolated subcellular compartments (cytoplasmic and mitochondrial) and crosslinked immunoprecipitate (CLIP) with PNPase within the mitochondrion were sequenced on the Illumina HiSeq and MiSeq, respectively. LncRNA sequence and structure were evaluated through supervised (Classification and Regression Trees (CART) and Support Vector Machines, (SVM)) machine learning algorithms. In HL-1 cells, qPCR of PNPase CLIP knockout mutants (KH and S1) were performed. In vitro fluorescence assays assessed PNPase RNA binding capacity and verified with PNPase CLIP. 112 (mouse) and 1,548 (human) lncRNAs were identified in the mitochondrion with Malat1 being the most highly expressed. Most non-coding RNAs binding PNPase were lncRNAs, including Malat1. LncRNA fragments bound to PNPase compared against randomly generated sequences of similar length showed stratification with SVM and CART algorithms. The lncRNAs bound to PNPase were used to create a criterion for binding, with experimental validation revealing increased binding affinity of RNA designed to bind PNPase compared to control RNA. Binding of lncRNAs to PNPase was decreased through knockout of RNA binding domains KH and S1. In conclusion, sequence and secondary structural features identified by machine learning enhance the likelihood of nuclear-encoded lncRNAs to bind to PNPase and undergo import into the mitochondrion.

3.
Am J Emerg Med ; 80: 123-131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574434

ABSTRACT

The number of critically ill patients that present to emergency departments across the world has risen steadily for nearly two decades. Despite a decrease in initial emergency department (ED) volumes early in the COVID-19 pandemic, the proportion of critically ill patients is now higher than pre-pandemic levels [1]. The emergency physician (EP) is often the first physician to evaluate and resuscitate a critically ill patient. In addition, EPs are frequently tasked with providing critical care long beyond the initial resuscitation. Prolonged boarding of critically ill patients in the ED is associated with increased duration of mechanical ventilation, increased intensive care unit (ICU) length of stay, increased hospital length of stay, increased medication-related adverse events, and increased in-hospital, 30-day, and 90-day mortality [2-4]. Given the continued increase in critically ill patients along with the increases in boarding critically ill patients in the ED, it is imperative for the EP to be knowledgeable about recent literature in resuscitation and critical care medicine, so that critically ill patients continue to receive evidence-based care. This review summarizes important articles published in 2022 that pertain to the resuscitation and management of select critically ill ED patients. These articles have been selected based on the authors review of key critical care, resuscitation, emergency medicine, and medicine journals and their opinion of the importance of study findings as it pertains to the care of the critically ill ED patient. Topics covered in this article include cardiac arrest, post-cardiac arrest care, rapid sequence intubation, mechanical ventilation, fluid resuscitation, and sepsis.


Subject(s)
COVID-19 , Critical Care , Humans , Critical Care/methods , COVID-19/epidemiology , COVID-19/therapy , Critical Illness/therapy , Emergency Service, Hospital , Resuscitation/methods , SARS-CoV-2
4.
Noncoding RNA ; 10(2)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668379

ABSTRACT

Historically, the Y chromosome has presented challenges to classical methodology and philosophy of understanding the differences between males and females. A genetic unsolved puzzle, the Y chromosome was the last chromosome to be fully sequenced. With the advent of the Human Genome Project came a realization that the human genome is more than just genes encoding proteins, and an entire universe of RNA was discovered. This dark matter of biology and the black box surrounding the Y chromosome have collided over the last few years, as increasing numbers of non-coding RNAs have been identified across the length of the Y chromosome, many of which have played significant roles in disease. In this review, we will uncover what is known about the connections between the Y chromosome and the non-coding RNA universe that originates from it, particularly as it relates to long non-coding RNAs, microRNAs and circular RNAs.

5.
Biotechnol J ; 19(1): e2300041, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37766672

ABSTRACT

During the COVID-19 pandemic, long development timelines typically associated with vaccines were challenged. The urgent need for a vaccine provided a strong driver to reevaluate existing vaccine development approaches. Innovative approaches to regulatory approval were realized, including the use of platform-based technology. In collaboration with the International AIDS Vaccine Initiative, Inc. (IAVI), Merck & Co., Inc., Rahway, NJ, USA rapidly advanced an investigational SARS-CoV-2 vaccine based on the recombinant vesicular stomatitis virus (rVSV) platform used for the Ebola vaccine ERVEBO (rVSV∆G-ZEBOV-GP). An rVSV∆G-SARS-CoV-2 vaccine candidate was generated using the SARS-CoV-2 spike protein to replace the VSV G protein. The purification process development for this vaccine candidate was detailed in this paper. Areas were highlighted where the ERVEBO platform process was successfully adopted and where additional measures were needed for the SARS-CoV-2 vaccine candidate. These included: (i) endonuclease addition directly into the bioreactor prior to harvest, (ii) inclusion of a core-shell chromatography step for improved purification, and (iii) incorporation of a terminal, sterile filtration step to eliminate the need for aseptic, closed processing. High infectious virus titers were achieved in Phase 3 clinical drug substance (>108 PFU mL-1 ), and process consistency was demonstrated across four large scale batches that were completed in 6 months from clone selection.


Subject(s)
COVID-19 , Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Spike Glycoprotein, Coronavirus , Vesicular Stomatitis , Viral Vaccines , Animals , Humans , Ebola Vaccines/genetics , Hemorrhagic Fever, Ebola/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Pandemics , COVID-19/prevention & control , Vesiculovirus , Vesicular stomatitis Indiana virus , Vaccines, Synthetic , Antibodies, Viral
6.
Immunol Allergy Clin North Am ; 43(3): 513-532, 2023 08.
Article in English | MEDLINE | ID: mdl-37394257

ABSTRACT

Angioedema is a well-recognized and potentially lethal complication of angiotensin-converting enzyme inhibitor (ACEi) therapy. In ACEi-induced angioedema, bradykinin accumulates due to a decrease in its metabolism by ACE, the enzyme that is primarily responsible for this function. The action of bradykinin at bradykinin type 2 receptors leads to increased vascular permeability and the accumulation of fluid in the subcutaneous and submucosal space. Patients with ACEi-induced angioedema are at risk for airway compromise because of the tendency for the face, lips, tongue, and airway structures to be affected. The emergency physician should focus on airway evaluation and management when treating patients with ACEi-induced angioedema.


Subject(s)
Angioedema , Angiotensin-Converting Enzyme Inhibitors , Humans , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Bradykinin/therapeutic use , Bradykinin/metabolism , Angioedema/diagnosis , Angioedema/etiology , Angioedema/therapy
7.
Vaccine ; 41(35): 5113-5125, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37321893

ABSTRACT

Development of a vaccine drug product requires formulation optimization to ensure that the vaccine's effectiveness is preserved upon storage throughout the shelf-life of the product. Although aluminum adjuvants have been widely used in vaccine formulations to safely and effectively potentiate an immune response, careful attention must be directed towards ensuring that the type of aluminum adjuvant does not impact the stability of the antigenic composition. PCV15 is a polysaccharide-protein conjugate vaccine comprising the pneumococcal polysaccharide (PnPs) serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F), each individually conjugated to the protein carrier CRM197. PCV15 was formulated with either amorphous aluminum hydroxyphosphate sulfate adjuvant (AAHS) or aluminum phosphate adjuvant (AP) and examined for both stability and immunogenicity. Using a collection of methods to evaluate vaccine stability, it was discovered that certain PCV15 serotypes (e.g., 6A, 19A, 19F) formulated with AAHS resulted in a reduction of immunogenicity in vivo and a reduction in recoverable dose as tested by an in vitro potency assay. The same polysaccharide-protein conjugates formulated with AP were stable regarding all measures tested. Moreover, the reduction in potency of certain serotypes correlated with chemical degradation of the polysaccharide antigen caused by the aluminum adjuvant as measured by reducing polyacrylamide gel electrophoresis (SDS-PAGE), High-Pressure Size Exclusion Chromatography coupled with UV detection (HPSEC-UV) and ELISA immunoassay. This study suggests a formulation, which includes AAHS, may negatively impact the stability of a pneumococcal polysaccharide-protein conjugate vaccine that contains phosphodiester groups. This decrease in stability would likely result in a decrease in the "active" concentration of antigen dose, and herein, it is shown that such instability directly compromised vaccine immunogenicity in an animal model. The results presented in this study help to explain critical degradation mechanisms of pneumococcal polysaccharide-protein conjugate vaccines.


Subject(s)
Aluminum , Pneumococcal Infections , Animals , Vaccines, Conjugate , Pneumococcal Vaccines , Serogroup , Adjuvants, Immunologic , Pneumococcal Infections/prevention & control , Antibodies, Bacterial
8.
Biotechnol Bioeng ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37209394

ABSTRACT

Live virus vaccine (LVV) purification, employing chromatography, can be challenged by low binding capacities and elution yields. Alternatively, processes relying solely on enzymatic digestion steps and size-based membrane separations can be limited by suboptimal reduction of process related impurities and poorly scalable unit operations. Here, we demonstrate that the combination of flowthrough mode chromatography and an ultrafiltration/diafiltration (UF/DF) unit operation delivers a purification process for two different LVV candidates, V590 and Measles, expressed in adherent Vero cells. For V590, chromatography with mixed mode cation exchange resins returned final product yields of ∼50% and logarithmic reduction values (LRVs) of 1.7->3.4 and 2.5-3.0 for host cell DNA (hcDNA) and host cell proteins (HCPs), respectively. For Measles, chromatography with mixed mode anion exchange resins returned final product yields of ∼50% and LRVs of 1.6 and 2.2 for hcDNA and HCPs, respectively. For both V590 and Measles processing, the employed resins cleared a key HCP, fibronectin, which could foul the UF/DF unit operation, and thusly enabling it to further reduce HCPs and to formulate the final LVV products. This integrated purification process utilizes the complementary action of the two unit operations and its applicability across LVVs supports its consideration for their processing.

9.
RNA Biol ; 20(1): 136-139, 2023 01.
Article in English | MEDLINE | ID: mdl-37016725

ABSTRACT

The Keystone Symposium 'Small Regulatory RNAs: From Bench to Bedside' was held in Santa Fe, New Mexico from May 1-4, 2022. The symposium was organized by Frank J. Slack, Jörg Vogel, Ivan Martinez and Karyn Schmidt, and brought together scientists working in noncoding RNA biology, therapeutics, and technologies to address mechanistic questions about small regulatory RNAs and facilitate translation of these findings into clinical applications. The conference addressed four specific aims: Aim 1. Focus on the exciting biology of small regulatory RNAs, highlighting the best current research into the role that small RNAs play in fundamental biological processes; Aim 2. Focus on the latest efforts to harness the power of these RNAs as agents in the fight against disease and provide the basic understanding that will drive the invention of powerful clinical tools; Aim 3. Attract leaders from both academia and industry working in small RNAs to one place for critical discussions that will advance the field and accelerate the bench to bedside use of this technology; Aim 4. Provide a stimulating environment where students, postdoctoral researchers and junior investigators, along with scientists from Biotechnology and Pharmaceutical companies specializing in small regulatory RNAs, can present and discuss their research with the best minds in the field.


Subject(s)
RNA, Untranslated , Humans , RNA, Untranslated/genetics , Congresses as Topic
10.
ACS Omega ; 8(3): 3319-3328, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36685032

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral agent that is responsible for the coronavirus disease-2019 (COVID-19) pandemic. One of the live virus vaccine candidates Merck and Co., Inc. was developing to help combat the pandemic was V590. V590 was a live-attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV) in which the envelope VSV glycoprotein (G protein) gene was replaced with the gene for the SARS-CoV-2 spike protein (S protein), the protein responsible for viral binding and fusion to the cell membrane. To assist with product and process development, a quantitative Simple Western (SW) assay was successfully developed and phase-appropriately qualified to quantitate the concentration of S protein expressed in V590 samples. A strong correlation was established between potency and S-protein concentration, which suggested that the S-protein SW assay could be used as a proxy for virus productivity optimization with faster data turnaround time (3 h vs 3 days). In addition, unlike potency, the SW assay was able to provide a qualitative profile assessment of the forms of S protein (S protein, S1 subunit, and S multimer) to ensure appropriate levels of S protein were maintained throughout process and product development. Finally, V590 stressed stability studies suggested that time and temperature contributed to the instability of S protein demonstrated by cleavage into its subunits, S1 and S2, and aggregation into S multimer. Both of which could potentially have a deleterious effect on the vaccine immunogenicity.

11.
Am J Emerg Med ; 63: 12-21, 2023 01.
Article in English | MEDLINE | ID: mdl-36306647

ABSTRACT

An emergency physician (EP) is often the first provider to evaluate, resuscitate, and manage a critically ill patient. Over the past two decades, the annual hours of critical care delivered in emergency departments across the United States has dramatically increased. During the period from 2006 to 2014, the extent of critical care provided in the emergency department (ED) to critically ill patients increased approximately 80%. During the same time period, the number of intubated patients cared for in the ED increased by approximately 16%. In addition to seeing more critically ill patients, EPs are often tasked with providing critical care long beyond the initial resuscitation period. Prolonged ED boarding times for critically ill patients is associated with increased duration of mechanical ventilation, increased intensive care unit (ICU) length of stay, increased hospital length of stay, increased medication-related adverse events, and increased in-hospital, 30-day, and 90-day mortality. As a result, it is imperative for the EP to be knowledgeable about recent developments in resuscitation and critical care medicine, so that the critically ill ED patient care receive current evidence-based care. These articles have been selected based on the authors review of key critical care, resuscitation, emergency medicine, and medicine journals and their opinion of the importance of study findings as it pertains to the care of the critically ill ED patient. Topics covered in this article include cardiac arrest, post-cardiac arrest care, rapid sequence intubation, mechanical ventilation, fluid resuscitation, cardiogenic shock, transfusions, and sepsis.


Subject(s)
Critical Care , Heart Arrest , Humans
12.
Biotechnol Prog ; 39(1): e3300, 2023 01.
Article in English | MEDLINE | ID: mdl-36101005

ABSTRACT

This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.


Subject(s)
Serum Albumin, Bovine , Sodium Chloride , Sodium Chloride/chemistry , Adsorption , Serum Albumin, Bovine/chemistry , Polymers/chemistry , Polyethylene Glycols
13.
iScience ; 25(10): 105038, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36068847

ABSTRACT

Severe outcomes from SARS-CoV-2 infection are highly associated with preexisting comorbid conditions like hypertension, diabetes, and obesity. We utilized the diet-induced obesity (DIO) model of metabolic dysfunction in K18-hACE2 transgenic mice to model obesity as a COVID-19 comorbidity. Female DIO, but not male DIO mice challenged with SARS-CoV-2 were observed to have shortened time to morbidity compared to controls. Increased susceptibility to SARS-CoV-2 in female DIO was associated with increased viral RNA burden and interferon production compared to males. Transcriptomic analysis of the lungs from all mouse cohorts revealed sex- and DIO-associated differential gene expression profiles. Male DIO mice after challenge had decreased expression of antibody-related genes compared to controls, suggesting antibody producing cell localization in the lung. Collectively, this study establishes a preclinical comorbidity model of COVID-19 in mice where we observed sex- and diet-specific responses that begin explaining the effects of obesity and metabolic disease on COVID-19 pathology.

14.
Front Immunol ; 13: 948431, 2022.
Article in English | MEDLINE | ID: mdl-36091051

ABSTRACT

Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab')2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab')2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100µg dose of EpF(ab')2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab')2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab')2-treated mice challenged using the Delta variant at 10µg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab')2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , Horses , Humans , Immunization, Passive , Melphalan , Mice , Pandemics , SARS-CoV-2/genetics , gamma-Globulins
15.
Vaccine ; 40(37): 5529-5536, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35985887

ABSTRACT

Vaccine development is a complex process, starting with selection of a promising immunogen in the discovery phase, followed by process development in the preclinical phase, and later by clinical trials in tandem with process improvements and scale up. A large suite of analytical techniques is required to gain understanding of the vaccine candidate so that a relevant immunogen is selected and subsequently manufactured consistently throughout the lifespan of the product. For viral vaccines, successful immunogen production is contingent on its maintained antigenicity and/or infectivity, as well as the ability to characterize these qualities within the context of the process, formulation, and clinical performance. In this report we show the utility of flow virometry during preclinical development of a Covid 19 vaccine candidate based on SARS-CoV-2 spike (S) protein expressed on vesicular stomatitis virus (VSV). Using a panel of monoclonal antibodies, we were able to detect the S protein on the surface of the recombinant VSV virus, monitor the expression levels, detect differences in the antigen based on S protein sequence and after virus inactivation, and monitor S protein stability. Collectively, flow virometry provided important data that helped to guide preclinical development of this vaccine candidate.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
16.
PLoS One ; 17(8): e0273430, 2022.
Article in English | MEDLINE | ID: mdl-36037222

ABSTRACT

The COVID-19 pandemic has been fueled by SARS-CoV-2 novel variants of concern (VOC) that have increased transmissibility, receptor binding affinity, and other properties that enhance disease. The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was higher than Alpha or Beta strains. To characterize the differences in the Delta strain's pathogenesis, a time-course experiment was performed to evaluate the overall host response to Alpha or Delta variant challenge. qRT-PCR analysis of Alpha- or Delta-challenged mice revealed no significant difference between viral RNA burden in the lung, nasal wash or brain. However, histopathological analysis revealed high lung tissue inflammation and cell infiltration following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-sequencing analysis of lungs comparing challenged to no challenge mice revealed that Alpha-challenged mice have more total genes differentially activated. Conversely, Delta-challenged mice have a higher magnitude of differential gene expression. Delta-challenged mice have increased interferon-dependent gene expression and IFN-γ production compared to Alpha. Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico observations of this study underscore the need to conduct experiments with VOC strains to best model COVID-19 when evaluating therapeutics and vaccines.


Subject(s)
COVID-19 , Pneumonia , Animals , Antiviral Agents , COVID-19/genetics , Disease Models, Animal , Humans , Interferons , Melphalan , Mice , Mice, Transgenic , Pandemics , SARS-CoV-2 , gamma-Globulins
17.
Emerg Med Clin North Am ; 40(3): 615-627, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35953220

ABSTRACT

Emergency physicians intubate critically ill patients almost daily. Intubation of the critically ill emergency department (ED) patient is a high-risk, high-stress situation, as many have physiologic derangements such as hypotension, hypoxemia, acidosis, and right ventricular dysfunction that markedly increase the risk of peri-intubation cardiovascular collapse and cardiac arrest. This chapter discusses critical pearls and pitfalls to intubate the critically ill ED patient with physiologic derangements. These pearls and pitfalls include appropriate preoxygenation; circulatory resuscitation; proper patient position and room setup; selection of medications for rapid sequence intubation; and intubation of patients with severe acidosis, traumatic brain injury, and pulmonary hypertension.


Subject(s)
Acidosis , Hypotension , Shock , Critical Illness , Humans , Intubation, Intratracheal
18.
mSphere ; 7(4): e0024322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35968964

ABSTRACT

The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (ß RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (ß/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (ß RBD HBsAg+SWE) or without HBsAg (ß RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only ß/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with ß RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Alum Compounds , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Emulsions , Hepatitis B Surface Antigens/genetics , Humans , Melphalan , Mice , Mice, Inbred BALB C , Pandemics , RNA, Messenger , RNA, Viral , SARS-CoV-2 , Squalene , Vaccines, Synthetic , Water , gamma-Globulins , mRNA Vaccines
19.
Vaccine ; 40(31): 4182-4189, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35688729

ABSTRACT

The covalent attachment of a bacterial-derived capsular polysaccharide to protein is of critical importance in transforming the polysaccharide from an antigen with limited immunogenicity in infants and older adults to an antigen that can prevent potentially fatal disease. For a polysaccharide-protein conjugate vaccine (PCV) candidate to be successful, it must be sufficiently stable. Chemical breakage of carbohydrate bonds in the polysaccharide may result in the reduction of "conjugate dose" and could negatively impact immunogenicity and the ability of the vaccine to prime for memory responses. Therefore, development of analytical tools to monitor the integrity of a polysaccharide-protein conjugate (glycoconjugate) vaccine is of practical significance. In this work, reducing SDS-PAGE, Intrinsic Protein Fluorescence Spectroscopy (IPFS), Differential Scanning Fluorimetry (DSF) were evaluated methods to study the impact of time, temperature, and formulation composition on the stability of a glycoconjugate vaccine prepared by multisite coupling of polysaccharide to a carrier protein. In addition, an automated capillary Western system was also evaluated to study the impact of storage on glycoconjugate vaccine stability. Two streptococcus pneumoniae polysaccharide-protein conjugates (serotype 3 and serotype 19A) were chosen to examine their physicochemical stability when formulated as a single antigen vaccine. While all methods require only a small amount of test article and can test multiple samples per assay run, automated capillary Western has the additional advantage of being highly sensitive even at low concentrations in complex vaccine formulations that contain aluminum adjuvant and multiple antigens. Results suggest that automated capillary Western is stability-indicating and may be an effective analytical technology tool for the formulation development of a multivalent glycoconjugate vaccine.


Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Aged , Antibodies, Bacterial , Glycoconjugates , Humans , Industrial Development , Infant , Pneumococcal Infections/prevention & control , Polysaccharides, Bacterial , Vaccines, Conjugate
20.
Biotechnol J ; 17(10): e2200191, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35771570

ABSTRACT

During the development of a SARS-CoV-2 vaccine candidate, at the height of the COVID-19 pandemic, raw materials shortages, including chromatography resins, necessitated the determination of a cleaning in place (CIP) strategy for a multimodal core-shell resin both rapidly and efficiently. Here, the deployment of high throughput (HT) techniques to screen CIP conditions for cleaning Capto Core 700 resin exposed to clarified cell culture harvest (CCCH) of a SARS-CoV-2 vaccine candidate produced in Vero adherent cell culture are described. The best performing conditions, comprised of 30% n-propanol and ≥0.75 N NaOH, were deployed in cycling experiments, completed with miniature chromatography columns, to demonstrate their effectiveness. The success of the CIP strategy was ultimately verified at the laboratory scale. Here, its impact was assessed across the entire purification process which also included an ultrafiltration/diafiltration step. It is shown that the implementation of the CIP strategy enabled the re-use of the Capto Core 700 resin for up to 10 cycles without any negative impact on the purified product. Hence, the strategic combination of HT and laboratory-scale experiments can lead rapidly to robust CIP procedures, even for a challenging to clean resin, and thus help to overcome supply shortages.


Subject(s)
COVID-19 Vaccines , COVID-19 , 1-Propanol , COVID-19/prevention & control , Humans , Pandemics , Regeneration , SARS-CoV-2 , Sodium Hydroxide
SELECTION OF CITATIONS
SEARCH DETAIL
...