Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(10): e46373, 2012.
Article in English | MEDLINE | ID: mdl-23071559

ABSTRACT

Climate change and invasive species can both have negative impacts on native species diversity. Additionally, climate change has the potential to favor invasive species over natives, dealing a double blow to native biodiversity. It is, therefore, vital to determine how changing climate conditions are directly linked to demographic rates and population growth of non-native species so we can quantitatively evaluate how invasive populations may be affected by changing conditions and, in turn, impact native species. Cordylophora caspia, a hydrozoan from the Ponto-Caspian region, has become established in the brackish water habitats of the San Francisco Estuary (SFE). We conducted laboratory experiments to study how temperature and salinity affect C. caspia population growth rates, in order to predict possible responses to climate change. C. Caspia population growth increased nonlinearly with temperature and leveled off at a maximum growth rate near the annual maximum temperature predicted under a conservative climate change scenario. Increasing salinity, however, did not influence growth rates. Our results indicate that C. caspia populations in the SFE will benefit from predicted regional warming trends and be little affected by changes in salinity. The population of C. caspia in the SFE has the potential to thrive under future climate conditions and may subsequently increase its negative impact on the food web.


Subject(s)
Climate Change , Estuaries , Hydrozoa/physiology , Introduced Species , Animals , Hydrozoa/growth & development , Salinity , Temperature
2.
J Morphol ; 269(9): 1041-55, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18473370

ABSTRACT

The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction-feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction-feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior-directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic-feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction-feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey.


Subject(s)
Feeding Behavior , Head/anatomy & histology , Mouth/anatomy & histology , Muscle, Skeletal/anatomy & histology , Sharks/anatomy & histology , Skull/anatomy & histology , Animals , Electromyography , Female , Jaw/anatomy & histology , Jaw/physiology , Male , Mouth/physiology , Muscle, Skeletal/physiology , Predatory Behavior , Sharks/physiology , Skull/physiology , Sucking Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...