Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 28(12): 1780-1794.e5, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34214450

ABSTRACT

Unbiased profiling approaches are powerful tools for small-molecule target or mode-of-action deconvolution as they generate a holistic view of the bioactivity space. This is particularly important for non-protein targets that are difficult to identify with commonly applied target identification methods. Thereby, unbiased profiling can enable identification of novel bioactivity even for annotated compounds. We report the identification of a large bioactivity cluster comprised of numerous well-characterized drugs with different primary targets using a combination of the morphological Cell Painting Assay and proteome profiling. Cluster members alter cholesterol homeostasis and localization due to their physicochemical properties that lead to protonation and accumulation in lysosomes, an increase in lysosomal pH, and a disturbed cholesterol homeostasis. The identified cluster enables identification of modulators of cholesterol homeostasis and links regulation of genes or proteins involved in cholesterol synthesis or trafficking to physicochemical properties rather than to nominal targets.


Subject(s)
Cholesterol/metabolism , Proteome/metabolism , Animals , Cell Line , Female , Humans , Mice
2.
Angew Chem Int Ed Engl ; 59(14): 5595-5601, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31829492

ABSTRACT

The prenyl-protein chaperone PDEδ modulates the localization of lipidated proteins in the cell, but current knowledge about its biological function is limited. Small-molecule inhibitors that target the PDEδ prenyl-binding site have proven invaluable in the analysis of biological processes mediated by PDEδ, like KRas cellular trafficking. However, allosteric inhibitor release from PDEδ by the Arl2/3 GTPases limits their application. We describe the development of new proteolysis-targeting chimeras (PROTACs) that efficiently and selectively reduce PDEδ levels in cells through induced proteasomal degradation. Application of the PDEδ PROTACs increased sterol regulatory element binding protein (SREBP)-mediated gene expression of enzymes involved in lipid metabolism, which was accompanied by elevated levels of cholesterol precursors. This finding for the first time demonstrates that PDEδ function plays a role in the regulation of enzymes of the mevalonate pathway.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Lipid Metabolism , Molecular Probes/chemistry , Cell Line , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression , Humans , Lipid Metabolism/drug effects , Molecular Probes/metabolism , Molecular Probes/pharmacology , Proteolysis , Sterol Regulatory Element Binding Proteins/metabolism
3.
Bioorg Med Chem ; 26(8): 1426-1434, 2018 05 01.
Article in English | MEDLINE | ID: mdl-28935183

ABSTRACT

Prenylation is a post-translational modification that increases the affinity of proteins for membranes and mediates protein-protein interactions. The retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ) is a prenyl binding protein that is essential for the shuttling of small GTPases between different membrane compartments and, thus, for their proper functioning. Although the prenylome comprises up to 2% of the mammalian proteome, only few prenylated proteins are known to interact with PDEδ. A proteome-wide approach was employed to map the PDEδ interactome among the prenylome and revealed RAB23, CDC42 and CNP as novel PDEδ interacting proteins. Moreover, PDEδ associates with the lamin A mutant progerin in a prenyl-dependent manner. These findings shed new light on the role of PDEδ in binding (and regulating) prenylated proteins in cells.


Subject(s)
Carrier Proteins/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Carrier Proteins/chemistry , Cells, Cultured , Cyclic Nucleotide Phosphodiesterases, Type 6/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Binding , Structure-Activity Relationship
4.
Angew Chem Int Ed Engl ; 56(28): 8153-8157, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28544137

ABSTRACT

Autophagy is a critical regulator of cellular homeostasis and metabolism. Interference with this process is considered a new approach for the treatment of disease, in particular cancer and neurological disorders. Therefore, novel small-molecule autophagy modulators are in high demand. We describe the discovery of autophinib, a potent autophagy inhibitor with a novel chemotype. Autophinib was identified by means of a phenotypic assay monitoring the formation of autophagy-induced puncta, indicating accumulation of the lipidated cytosolic protein LC3 on the autophagosomal membrane. Target identification and validation revealed that autophinib inhibits autophagy induced by starvation or rapamycin by targeting the lipid kinase VPS34.


Subject(s)
Autophagy/drug effects , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Autophagosomes/drug effects , Drug Discovery , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Sirolimus/pharmacology , Structure-Activity Relationship
5.
Cell Chem Biol ; 24(5): 589-597.e5, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28434875

ABSTRACT

Covalent labeling of amino acids in proteins by reactive small molecules, in particular at cysteine SH and lysine NH groups, is a powerful approach to identify and characterize proteins and their functions. However, for the less-reactive carboxylic acids present in Asp and Glu, hardly any methodology is available. Employing the lipoprotein binding chaperone PDE6δ as an example, we demonstrate that incorporation of isoxazolium salts that resemble the structure and reactivity of Woodward's reagent K into protein ligands provides a novel method for selective covalent targeting of binding site carboxylic acids in whole proteomes. Covalent adduct formation occurs via rapid formation of enol esters and the covalent bond is stable even in the presence of strong nucleophiles. This new method promises to open up hitherto unexplored opportunities for chemical biology research.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/chemistry , Glutamates/chemistry , Staining and Labeling/methods , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Ligands , Models, Molecular , Protein Conformation
6.
J Cell Biol ; 216(4): 961-981, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28320825

ABSTRACT

Kinetochores are macromolecular assemblies that connect chromosomes to spindle microtubules (MTs) during mitosis. The metazoan-specific ≈800-kD ROD-Zwilch-ZW10 (RZZ) complex builds a fibrous corona that assembles on mitotic kinetochores before MT attachment to promote chromosome alignment and robust spindle assembly checkpoint signaling. In this study, we combine biochemical reconstitutions, single-particle electron cryomicroscopy, cross-linking mass spectrometry, and structural modeling to build a complete model of human RZZ. We find that RZZ is structurally related to self-assembling cytosolic coat scaffolds that mediate membrane cargo trafficking, including Clathrin, Sec13-Sec31, and αß'ε-COP. We show that Spindly, a dynein adaptor, is related to BicD2 and binds RZZ directly in a farnesylation-dependent but membrane-independent manner. Through a targeted chemical biology approach, we identify ROD as the Spindly farnesyl receptor. Our results suggest that RZZ is dynein's cargo at human kinetochores.


Subject(s)
Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Spindle Apparatus/physiology , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Dyneins/metabolism , HeLa Cells , Humans , Kinetochores/physiology , M Phase Cell Cycle Checkpoints/physiology , Microtubules/metabolism , Mitosis/physiology , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...