Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645068

ABSTRACT

OrthoFusion, an intuitive super-resolution algorithm, is presented in this study to enhance the spatial resolution of clinical CT volumes. The efficacy of OrthoFusion is evaluated, relative to high-resolution CT volumes (ground truth), by assessing image volume and derived bone morphological similarity, as well as its performance in specific applications in 2D-3D registration tasks. Results demonstrate that OrthoFusion significantly reduced segmentation time, while improving structural similarity of bone images and relative accuracy of derived bone model geometries. Moreover, it proved beneficial in the context of biplane videoradiography, enhancing the similarity of digitally reconstructed radiographs to radiographic images and improving the accuracy of relative bony kinematics. OrthoFusion's simplicity, ease of implementation, and generalizability make it a valuable tool for researchers and clinicians seeking high spatial resolution from existing clinical CT data. This study opens new avenues for retrospectively utilizing clinical images for research and advanced clinical purposes, while reducing the need for additional scans, mitigating associated costs and radiation exposure.

2.
Comput Methods Biomech Biomed Engin ; 26(13): 1557-1571, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36165506

ABSTRACT

Statistical shape modeling (SSM) is an emerging tool for risk assessment of thoracic aortic aneurysm. However, the head branches of the aortic arch are often excluded in SSM. We introduced an SSM strategy based on principal component analysis that accounts for aortic branches and applied it to a set of patient scans. Computational fluid dynamics were performed on the reconstructed geometries to identify the extent to which branch model accuracy affects the calculated wall shear stress (WSS) and pressure. Surface-averaged and location-specific values of pressure did not change significantly, but local WSS error was high near branches when inaccurately modeled.


Subject(s)
Aorta, Thoracic , Aortic Aneurysm, Thoracic , Humans , Aorta, Thoracic/diagnostic imaging , Hemodynamics , Aorta , Models, Statistical , Stress, Mechanical , Models, Cardiovascular , Blood Flow Velocity
3.
Ann Biomed Eng ; 50(9): 1158-1172, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35731342

ABSTRACT

In cases of fetal aortic stenosis and evolving Hypoplastic Left Heart Syndrome (feHLHS), aortic stenosis is associated with specific abnormalities such as retrograde or bidirectional systolic transverse arch flow. Many cases progressed to hypoplastic left heart syndrome (HLHS) malformation at birth, but fetal aortic valvuloplasty can prevent the progression in many cases. Since both disease and intervention involve drastic changes to the biomechanical environment, in-vivo biomechanics likely play a role in inducing and preventing disease progression. However, the fluid mechanics of feHLHS is not well-characterized. Here, we conduct patient-specific echocardiography-based flow simulations of normal and feHLHS left ventricles (LV), to understand the essential fluid dynamics distinction between the two cohorts. We found high variability across feHLHS cases, but also the following unifying features. Firstly, feHLHS diastole mitral inflow was in the form of a narrowed and fast jet that impinged onto the apical region, rather than a wide and gentle inflow in normal LVs. This was likely due to a malformed mitral valve with impaired opening dynamics. This altered inflow caused elevated vorticity dynamics and wall shear stresses (WSS) and reduced oscillatory shear index at the apical zone rather than mid-ventricle. Secondly, feHLHS LV also featured elevated systolic and diastolic energy losses, intraventricular pressure gradients, and vortex formation numbers, suggesting energy inefficiency of flow and additional burden on the LV. Thirdly, feHLHS LV had poor blood turnover, suggesting a hypoxic environment, which could be associated with endocardial fibroelastosis that is often observed in these patients.


Subject(s)
Aortic Valve Stenosis , Hypoplastic Left Heart Syndrome , Aortic Valve Stenosis/diagnostic imaging , Female , Fetal Heart/diagnostic imaging , Heart Ventricles/diagnostic imaging , Humans , Hypoplastic Left Heart Syndrome/diagnostic imaging , Hypoplastic Left Heart Syndrome/etiology , Hypoplastic Left Heart Syndrome/prevention & control , Infant, Newborn , Pregnancy , Ultrasonography, Prenatal/adverse effects
4.
Med Image Anal ; 74: 102229, 2021 12.
Article in English | MEDLINE | ID: mdl-34571337

ABSTRACT

It is important to improve echocardiography image quality, because the accuracy of echocardiographic assessment and diagnosis relies on image quality. Previous work on 2D temporal image compounding for image frames with matching cardiac phases (synchronous), and for temporally neighbouring image frames (asynchronous) over small ranges of time frames showed good improvement to image quality. Here, we extend this by performing asynchronous temporal compounding to echocardiographic images in 3D, involving all frames within a cardiac cycle, via a robust 3D cardiac motion estimation algorithm to describe the large image deformations. After compounding, the images can be reanimated via the motion model. Various methods of fusing image frames together are tested, including mean, max, and wavelet methods, and outlier rejection algorithms. The compounding algorithm is applied on 3D human adult, porcine adolescent, and human fetal echocardiography images. Results show significant improvements to contrast-to-noise ratio (CNR) and boundary clarity, and significantly decreased variability in manual quantification of cardiac chamber volumes after compounding. Interestingly, compounding can extend the field of view of the echo images, by reconstructing cardiac structures that momentarily exceeded the field of view, using the motion estimation algorithm to calculate their locations outside the field of view during these time periods. Although all compounding methods provide general improvements, the mean method led to blurred boundaries, while the max methods led to high variability of CNR. Outlier rejection algorithms were found to be useful in addressing these weaknesses.


Subject(s)
Echocardiography, Three-Dimensional , Echocardiography , Algorithms , Animals , Heart/diagnostic imaging , Humans , Motion , Swine
5.
Dev Dyn ; 250(12): 1759-1777, 2021 12.
Article in English | MEDLINE | ID: mdl-34056790

ABSTRACT

BACKGROUND: Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS: Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS: Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.


Subject(s)
Biomechanical Phenomena/drug effects , Diacetyl/analogs & derivatives , Heart/embryology , Zebrafish , Animals , Animals, Genetically Modified , Biomechanical Phenomena/physiology , Diacetyl/pharmacology , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Embryonic Development/genetics , Gene Expression Regulation, Developmental/drug effects , Heart/drug effects , Heart/physiology , Hydrodynamics , Myocardial Contraction/drug effects , Myocardium/metabolism , Organogenesis/drug effects , Organogenesis/genetics , Organogenesis/physiology , Stress, Mechanical , Zebrafish/embryology , Zebrafish/genetics
6.
J Biomech ; 120: 110353, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33730564

ABSTRACT

Development of the fetal heart is a fascinating process that involves a tremendous amount of growth. Here, we performed image-based flow simulations of 3 human fetal left ventricles (LV), and investigated the hypothetical scenario where the sizes of the hearts are scaled down, leading to reduced Reynolds number, to emulate earlier fetal stages. The shape and motion of the LV were retained over the scaling to isolate and understand the effects of length scaling on its fluid dynamics. We observed an interesting cut-off point in Reynolds number (Re), across which the dependency of LV wall shear stress (WSS) on Re changed. This was in line with classical fluid mechanic theory where skin friction coefficient exhibited first a decreasing trend and then a plateauing trend with increasing Re. Below this cut-off point, viscous effects dominated, stifling the formation of LV diastolic vorticity structures, and WSS was roughly independent of Reynolds number. However, above this cut-off, inertial effects dominated to cause diastolic vortex ring formation and detachment, and to cause WSS to scale linearly with Reynolds number. Results suggested that this transition point is found at approximately 11 weeks of gestation. Since WSS is thought to be a biomechanical stimuli for growth, this may have implications on normal fetal heart growth and malformation diseases like Hypoplastic Left Heart Syndrome.


Subject(s)
Heart Ventricles , Hemodynamics , Computer Simulation , Female , Heart Ventricles/diagnostic imaging , Humans , Hydrodynamics , Models, Cardiovascular , Pregnancy , Stress, Mechanical
7.
Ann Biomed Eng ; 49(5): 1364-1379, 2021 May.
Article in English | MEDLINE | ID: mdl-33175989

ABSTRACT

Critical aortic stenosis (AS) of the fetal heart causes a drastic change in the cardiac biomechanical environment. Consequently, a substantial proportion of such cases will lead to a single-ventricular birth outcome. However, the biomechanics of the disease is not well understood. To address this, we performed Finite Element (FE) modelling of the healthy fetal left ventricle (LV) based on patient-specific 4D ultrasound imaging, and simulated various disease features observed in clinical fetal AS to understand their biomechanical impact. These features included aortic stenosis, mitral regurgitation (MR) and LV hypertrophy, reduced contractility, and increased myocardial stiffness. AS was found to elevate LV pressures and myocardial stresses, and depending on severity, can drastically decrease stroke volume and myocardial strains. These effects are moderated by MR. AS alone did not lead to MR velocities above 3 m/s unless LV hypertrophy was included, suggesting that hypertrophy may be involved in clinical cases with high MR velocities. LV hypertrophy substantially elevated LV pressure, valve flow velocities and stroke volume, while reducing LV contractility resulted in diminished LV pressure, stroke volume and wall strains. Typical extent of hypertrophy during fetal AS in the clinic, however, led to excessive LV pressure and valve velocity in the FE model, suggesting that reduced contractility is typically associated with hypertrophy. Increased LV passive stiffness, which might represent fibroelastosis, was found to have minimal impact on LV pressures, stroke volume, and wall strain. This suggested that fibroelastosis could be a by-product of the disease progression and does not significantly impede cardiac function. Our study demonstrates that FE modelling is a valuable tool for elucidating the biomechanics of congenital heart disease and can calculate parameters which are difficult to measure, such as intraventricular pressure and myocardial stresses.


Subject(s)
Aortic Valve Stenosis/physiopathology , Fetal Heart/physiopathology , Models, Cardiovascular , Aortic Valve Stenosis/diagnostic imaging , Biomechanical Phenomena , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/physiopathology , Fetal Heart/diagnostic imaging , Finite Element Analysis , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology , Ultrasonography , Ventricular Function, Left
8.
Sci Rep ; 10(1): 18510, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116206

ABSTRACT

Accurate cardiac motion estimation from medical images such as ultrasound is important for clinical evaluation. We present a novel regularisation layer for cardiac motion estimation that will be applied after image registration and demonstrate its effectiveness. The regularisation utilises a spatio-temporal model of motion, b-splines of Fourier, to fit to displacement fields from pairwise image registration. In the process, it enforces spatial and temporal smoothness and consistency, cyclic nature of cardiac motion, and better adherence to the stroke volume of the heart. Flexibility is further given for inclusion of any set of registration displacement fields. The approach gave high accuracy. When applied to human adult Ultrasound data from a Cardiac Motion Analysis Challenge (CMAC), the proposed method is found to have 10% lower tracking error over CMAC participants. Satisfactory cardiac motion estimation is also demonstrated on other data sets, including human fetal echocardiography, chick embryonic heart ultrasound images, and zebrafish embryonic microscope images, with the average Dice coefficient between estimation motion and manual segmentation at 0.82-0.87. The approach of performing regularisation as an add-on layer after the completion of image registration is thus a viable option for cardiac motion estimation that can still have good accuracy. Since motion estimation algorithms are complex, dividing up regularisation and registration can simplify the process and provide flexibility. Further, owing to a large variety of existing registration algorithms, such an approach that is usable on any algorithm may be useful.


Subject(s)
Echocardiography/methods , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Algorithms , Animals , Artifacts , Artificial Intelligence , Chick Embryo , Humans , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Motion , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique , Zebrafish
9.
J Biomech ; 112: 110035, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32971490

ABSTRACT

Hypoplastic left heart syndrome (HLHS) represents approximately 9% of all congenital heart defects and is one of the most complex, with the left side of the heart being generally underdeveloped. Numerous studies demonstrate that intracardiac fluid flow patterns in the embryonic and fetal circulation can impact cardiac structural formation and remodeling. This highlights the importance of quantifying the altered hemodynamic environment in congenital heart defects, like HLHS, relative to a normal heart as it relates to cardiac development. Therefore, to study human cardiovascular fetal flow, computational fluid dynamic simulations were performed using 4D patient-specific ultrasound scans in normal and HLHS hearts. In these simulations, we find that the HLHS right ventricle exhibits a greater cardiac output than normal; yet, hemodynamics are relatively similar between normal and HLHS right ventricles. Overall, this study provides detailed quantitative flow patterns for HLHS, which has the potential to guide future prevention and therapeutic interventions, while more immediately providing additional functional detail to cardiologists to aid in decision making.


Subject(s)
Heart Defects, Congenital , Hypoplastic Left Heart Syndrome , Fetus , Heart Ventricles/diagnostic imaging , Hemodynamics , Humans , Hypoplastic Left Heart Syndrome/diagnostic imaging
10.
J Biomech ; 96: 109357, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31635847

ABSTRACT

Left ventricular torsion is caused by shortening and relaxation of the helical fibres in the myocardium, and is thought to be an optimal configuration for minimizing myocardial tissue strains. Characteristics of torsional motion has also been proposed to be markers for cardiac dysfunction. However, its effects on fluid and energy dynamics in the left ventricle have not been comprehensively investigated. To investigate this, we performed image-based flow simulations on five healthy adult porcine and two healthy human foetal left ventricles (representing two different length scales) at different degrees of torsional motions. In the adult porcine ventricles, cardiac features such as papillary muscles and mitral valves, and cardiac conditions such as myocardial infarctions, were also included to investigate the effect of twist. The results showed that, for all conditions investigated, ventricular torsional motion caused minimal changes to flow patterns, and consistently accounted for less than 2% of the energy losses, wall shear stresses, and ejection momentum energy. In contrast, physiological characteristics such as chamber size, stroke volume and heart rate had a much greater influence on flow patterns and energy dynamics. The results thus suggested that it might not be necessary to model the torsional motion to study the flow and energy dynamics in left ventricles.


Subject(s)
Heart/physiology , Ventricular Function, Left/physiology , Animals , Fetus/physiology , Heart Rate , Humans , Hydrodynamics , Motion , Myocardial Contraction , Myocardial Infarction/physiopathology , Stroke Volume , Swine
11.
Am J Physiol Heart Circ Physiol ; 315(6): H1649-H1659, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30216114

ABSTRACT

Studies have suggested the effect of blood flow forces in pathogenesis and progression of some congenital heart malformations. It is therefore of interest to study the fluid mechanic environment of the malformed prenatal heart, such as the tetralogy of Fallot (TOF), especially when little is known about fetal TOF. In this study, we performed patient-specific ultrasound-based flow simulations of three TOF and seven normal human fetal hearts. TOF right ventricles (RVs) had smaller end-diastolic volumes (EDVs) but similar stroke volumes (SVs), whereas TOF left ventricles (LVs) had similar EDVs but slightly increased SVs compared with normal ventricles. Simulations showed that TOF ventricles had elevated systolic intraventricular pressure gradient (IVPG) and required additional energy for ejection but IVPG elevations were considered to be mild relative to arterial pressure. TOF RVs and LVs had similar pressures because of equalization via ventricular septal defect (VSD). Furthermore, relative to normal, TOF RVs had increased diastolic wall shear stresses (WSS) but TOF LVs were not. This was caused by high tricuspid inflow that exceeded RV SV, leading to right-to-left shunting and chaotic flow with enhanced vorticity interaction with the wall to elevate WSS. Two of the three TOF RVs but none of the LVs had increased thickness. As pressure elevations were mild, we hypothesized that pressure and WSS elevation could play a role in the RV thickening, among other causative factors. Finally, the endocardium surrounding the VSD consistently experienced high WSS because of RV-to-LV flow shunt and high flow rate through the over-riding aorta. NEW & NOTEWORTHY Blood flow forces are thought to cause congenital heart malformations and influence disease progression. We performed novel investigations of intracardiac fluid mechanics of tetralogy of Fallot (TOF) human fetal hearts and found essential differences from normal hearts. The TOF right ventricle (RV) and left ventricle had similar and elevated pressure but only the TOF RV had elevated wall shear stress because of elevated tricuspid inflow, and this may contribute to the observed RV thickening. TOF hearts also expended more energy for ejection.


Subject(s)
Hemodynamics , Models, Cardiovascular , Tetralogy of Fallot/physiopathology , Adult , Female , Fetal Heart/diagnostic imaging , Humans , Infant, Newborn , Myocardial Contraction , Pregnancy , Tetralogy of Fallot/diagnostic imaging
12.
Ann Biomed Eng ; 45(10): 2335-2347, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28721492

ABSTRACT

In both adult human and canine, the cardiac right ventricle (RV) is known to exhibit a peristaltic-like motion, where RV sinus (inflow region) contracts first and the infundibulum (outflow region) later, in a wave-like contraction motion. The delay in contraction between the sinus and infundibulum averaged at 15% of the cardiac cycle and was estimated to produce an intra-ventricular pressure difference of 15 mmHg. However, whether such a contractile motion occurs in human fetuses as well, its effects on hemodynamics remains unknown, and are the subject of the current study. Hemodynamic studies of fetal hearts are important as previous works showed that healthy cardiac development is sensitive to fluid mechanical forces. We performed 4D clinical ultrasound imaging on eight 20-weeks old human fetuses. In five fetal RVs, peristaltic-like contractile motion from the sinus to infundibulum ("forward peristaltic-like motion") was observed, but in one RV, peristaltic-like motion was observed from the infundibulum to sinus ("reversed peristaltic-like motion"), and two RVs contraction delay could not be determined due to poor regression fit. Next, we performed dynamic-mesh computational fluid dynamics simulations with varying extents of peristaltic-like motions for three of the eight RVs. Results showed that the peristaltic-like motion did not affect flow patterns significantly, but had significant influence on energy dynamics: increasing extent of forward peristaltic-like motion reduced the energy required for movement of fluid out of the heart during systolic ejection, while increasing extent of reversed peristaltic-like motion increased the required energy. It is currently unclear whether the peristaltic-like motion is an adaptation to reduce physiological energy expenditure, or merely an artefact of the cardiac developmental process.


Subject(s)
Echocardiography, Four-Dimensional , Fetus , Heart Ventricles/diagnostic imaging , Models, Cardiovascular , Myocardial Contraction/physiology , Ventricular Function , Animals , Blood Pressure/physiology , Dogs , Fetus/diagnostic imaging , Fetus/physiology , Humans
13.
Am J Physiol Heart Circ Physiol ; 311(6): H1498-H1508, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27663769

ABSTRACT

There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts.


Subject(s)
Fetal Heart/diagnostic imaging , Heart Ventricles/diagnostic imaging , Hemodynamics/physiology , Hydrodynamics , Computer Simulation , Diastole , Echocardiography, Four-Dimensional , Female , Fetal Heart/physiology , Humans , Image Processing, Computer-Assisted , Models, Theoretical , Pregnancy , Pregnancy Trimester, Second , Shear Strength , Systole , Ultrasonography, Prenatal
SELECTION OF CITATIONS
SEARCH DETAIL