Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 7(2): 159-171, 2021 02.
Article in English | MEDLINE | ID: mdl-33594264

ABSTRACT

The development of a new crop variety is a time-consuming and costly process due to the reliance of plant breeding on gene shuffling to introduce desired genes into elite germplasm, followed by backcrossing. Here, we propose alternative technology that transiently targets various regulatory circuits within a plant, leading to operator-specified alterations of agronomic traits, such as time of flowering, vernalization requirement, plant height or drought tolerance. We redesigned techniques of gene delivery, amplification and expression around RNA viral transfection methods that can be implemented on an industrial scale and with many crop plants. The process does not involve genetic modification of the plant genome and is thus limited to a single plant generation, is broadly applicable, fast, tunable and versatile, and can be used throughout much of the crop cultivation cycle. The RNA-based reprogramming may be especially useful in plant pathogen pandemics but also for commercial seed production and for rapid adaptation of orphan crops.


Subject(s)
Crops, Agricultural/growth & development , Crops, Agricultural/genetics , Gene Editing , Plant Breeding/methods , Seeds/growth & development , Seeds/genetics , Gene Expression Regulation, Plant , Genome, Plant
2.
BMC Plant Biol ; 18(1): 77, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29728053

ABSTRACT

BACKGROUND: Low availability of nitrogen (N) severely affects plant growth at different levels, which can be reverted by the resupply of N. To unravel the critical steps in primary metabolism underlying the growth adjustment in response to changes in N availability, transcriptomic and comprehensive metabolite analyses were performed in barley using primary leaves at early and later stages of N deprivation, and after N resupply to N-deficient plants. RESULT: N deficiency in leaves caused differential regulation of 1947 genes, mostly belonging to the functional classes photosynthesis, cell wall degradation, lipid degradation, amino acid degradation, transcription factors, phytohormone metabolism and receptor-like kinases. Interestingly, 62% of the genes responding to low N were regulated in the opposite direction after two days of N resupply. Reprogramming of gene transcription was linked to metabolic rearrangements and affected the metabolism of amino acids and sugars. The levels of major amino acids, including Glu, Asp, Ser, Gln, Gly, Thr, Ala, and Val, decreased during primary leaf age and, more pronounced, during low N-induced senescence, which was efficiently reverted after resupply of N. A significant decrease was observed for pyruvate and metabolites involved in the TCA cycle under low N, and this was reverted to initial levels after 5 days of N resupply. Correspondingly, transcript levels of genes coding for pyruvate kinase, pyruvate dehydrogenase, and pyruvate orthophosphate dikinase followed the same trend as related metabolites. CONCLUSION: Our results show that upon N limitation a specific pathway for remobilization at the link between glycolysis and TCA cycle in barley is established that is at least partly regulated by a strict reprogramming of the gene coding for pyruvate orthophosphate dikinase. Further analysis of this pathway, its regulatory levels and biochemical changing of pyruvate metabolism enzymes in response to N availability is needed to determine the link between N status and primary metabolism.


Subject(s)
Nitrogen/deficiency , Pyruvic Acid/metabolism , Amino Acids/metabolism , Cellular Reprogramming , Chlorophyll/metabolism , Citric Acid Cycle , Gene Expression Profiling , Gene Expression Regulation, Plant , Glycolysis , Hordeum/metabolism , Metabolic Networks and Pathways , Nitrogen/metabolism , Photosynthesis , Polymerase Chain Reaction , RNA, Plant/metabolism
3.
BMC Plant Biol ; 14: 12, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24400634

ABSTRACT

BACKGROUND: Iron (Fe) deficiency symptoms in maize (Zea mays subsp. mays) express as leaf chlorosis, growth retardation, as well as yield reduction and are typically observed when plants grow in calcareous soils at alkaline pH. To improve our understanding of genotypical variability in the tolerance to Fe deficiency-induced chlorosis, the objectives of this study were to (i) determine the natural genetic variation of traits related to Fe homeostasis in the maize intermated B73 × Mo17 (IBM) population, (ii) to identify quantitative trait loci (QTLs) for these traits, and (iii) to analyze expression levels of genes known to be involved in Fe homeostasis as well as of candidate genes obtained from the QTL analysis. RESULTS: In hydroponically-grown maize, a total of 47 and 39 QTLs were detected for the traits recorded under limited and adequate supply of Fe, respectively. CONCLUSIONS: From the QTL results, we were able to identify new putative candidate genes involved in Fe homeostasis under a deficient or adequate Fe nutritional status, like Ferredoxin class gene, putative ferredoxin PETF, metal tolerance protein MTP4, and MTP8. Furthermore, our expression analysis of candidate genes suggested the importance of trans-acting regulation for 2'-deoxymugineic acid synthase 1 (DMAS1), nicotianamine synthase (NAS3, NAS1), formate dehydrogenase 1 (FDH1), methylthioribose-1-phosphate isomerase (IDI2), aspartate/tyrosine/aromatic aminotransferase (IDI4), and methylthioribose kinase (MTK).


Subject(s)
Iron/metabolism , Plant Leaves/metabolism , Zea mays/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Zea mays/genetics
4.
New Phytol ; 130(4): 511-521, 1995 Aug.
Article in English | MEDLINE | ID: mdl-33874479

ABSTRACT

Graminaceous plant species respond to iron (Fe)-deficiency stress by enhancing the release of phytosiderophores from the roots and the uptake of Fe-phytosiderophores. For studying the mobilization and uptake of apoplasmic root Fe by barley (inherently high phytosiderophore release) and sorghum (inherently low phytosiderophore release) in axenic and nonaxenic (inoculated) nutrient solution, Fe pools in the root apoplasm were loaded during plant preculture with 10-4 M Fe(III)-EDTA. After 27 d growth in Fe-deficient nutrient solution, inoculated barley plants developed moderate Fe-deficiency chlorosis compared with the less chlorotic axenic plants. In inoculated plants, recovery of phytosiderophores and mobilization of apoplasmic root Fe tended to be slightly lower than in axenic plants, and in both treatments apoplasmic root Fe was completely depleted at harvest. As determined by the nonsoluble Fe fraction (> 0·2 µm) in the nutrient solution and at the rhizoplane, the microbial uptake and immobilization of apoplasmic root Fe was estimated at about 3% of the total amount of apoplasmic root Fe after preculture and at less than 10% of plant Fe uptake. Under axenic conditions, Fe-deficient sorghum also depleted apoplasmic root Fe and developed moderate Fe-deficiency chlorosis, although phytosiderophore recovery was 5-10-fold lower than in barley. By contrast, in inoculated sorghum plants, phytosiderophore recovery and Fe mobilization were extremely low. At harvest, in inoculated sorghum plants apoplasmic Fe pools were still considerably loaded and plant Fe uptake was c. 60% lower than that of axenic plants, resulting in severe Fe-deficiency chlorosis. Thus, in Fe-deficient sorghum plants, the lower rate of phytosiderophore release and its degradation restricted an efficient mobilization of apoplasmic root Fe in the presence of micro-organisms. In barley, however, the higher rate of phytosiderophore release allowed a complete mobilization of apoplasmic root Fe even in inoculated nutrient solution. Furthermore, the results show that the dominating effect of micro-organisms in their competition with barley and sorghum for apoplasmic root Fe is the degradation of phytosiderophores rather than the immobilization or uptake of Fe.

SELECTION OF CITATIONS
SEARCH DETAIL
...