Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int Genet ; 35: 123-135, 2018 07.
Article in English | MEDLINE | ID: mdl-29753263

ABSTRACT

Forensic DNA Phenotyping (FDP), i.e. the prediction of human externally visible traits from DNA, has become a fast growing subfield within forensic genetics due to the intelligence information it can provide from DNA traces. FDP outcomes can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling. Therefore, we previously developed and forensically validated the IrisPlex DNA test system for eye colour prediction and the HIrisPlex system for combined eye and hair colour prediction from DNA traces. Here we introduce and forensically validate the HIrisPlex-S DNA test system (S for skin) for the simultaneous prediction of eye, hair, and skin colour from trace DNA. This FDP system consists of two SNaPshot-based multiplex assays targeting a total of 41 SNPs via a novel multiplex assay for 17 skin colour predictive SNPs and the previous HIrisPlex assay for 24 eye and hair colour predictive SNPs, 19 of which also contribute to skin colour prediction. The HIrisPlex-S system further comprises three statistical prediction models, the previously developed IrisPlex model for eye colour prediction based on 6 SNPs, the previous HIrisPlex model for hair colour prediction based on 22 SNPs, and the recently introduced HIrisPlex-S model for skin colour prediction based on 36 SNPs. In the forensic developmental validation testing, the novel 17-plex assay performed in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, as previously shown for the 24-plex assay. Sensitivity testing of the 17-plex assay revealed complete SNP profiles from as little as 63 pg of input DNA, equalling the previously demonstrated sensitivity threshold of the 24-plex HIrisPlex assay. Testing of simulated forensic casework samples such as blood, semen, saliva stains, of inhibited DNA samples, of low quantity touch (trace) DNA samples, and of artificially degraded DNA samples as well as concordance testing, demonstrated the robustness, efficiency, and forensic suitability of the new 17-plex assay, as previously shown for the 24-plex assay. Finally, we provide an update to the publically available HIrisPlex website https://hirisplex.erasmusmc.nl/, now allowing the estimation of individual probabilities for 3 eye, 4 hair, and 5 skin colour categories from HIrisPlex-S input genotypes. The HIrisPlex-S DNA test represents the first forensically validated tool for skin colour prediction, and reflects the first forensically validated tool for simultaneous eye, hair and skin colour prediction from DNA.


Subject(s)
DNA/genetics , Eye Color/genetics , Genotyping Techniques/instrumentation , Hair Color/genetics , Polymorphism, Single Nucleotide , Skin Pigmentation/genetics , Animals , Forensic Genetics/methods , Humans , Phenotype , Polymerase Chain Reaction , Reproducibility of Results , Species Specificity
2.
Forensic Sci Int Genet ; 11: 39-51, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24631695

ABSTRACT

Mitochondrial DNA (mtDNA) can be used for matrilineal biogeographic ancestry prediction and can thus provide investigative leads towards identifying unknown suspects, when conventional autosomal short tandem repeat (STR) profiling fails to provide a match. Recently, six multiplex genotyping assays targeting 62 ancestry-informative mitochondrial single nucleotide polymorphisms (mt-SNPs) were developed. This hierarchical system of assays allows detection of the major haplogroups present in Africa, America, Western Eurasia, Eastern Eurasia, Australia and Oceania, thus revealing the broad geographic region of matrilineal origin of a DNA donor. Here, we provide a forensic developmental validation study of five multiplex assays targeting all the 62 ancestry-informative mt-SNPs following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. We demonstrate that the assays are highly sensitive; being able to produce full profiles at input DNA amounts of as little as 1pg. The assays were shown to be highly robust and efficient in providing information from degraded samples and from simulated casework samples of different substrates such as blood, semen, hair, saliva and trace DNA samples. Reproducible results were successfully achieved from concordance testing across three independent laboratories depicting the ease and reliability of these assays. Overall, our results demonstrate the suitability of these five mt-SNP assays for application to forensic casework and other purposes aiming to establish an individual's matrilineal genetic ancestry. With this validated tool, it is now possible to determine the matrilineal biogeographic origin of unknown individuals on the level of continental resolution from forensic DNA samples to provide investigative leads in criminal and missing person cases where autosomal STR profiling is uninformative.


Subject(s)
DNA, Mitochondrial/genetics , Genealogy and Heraldry , Genotype , Geography , Base Sequence , DNA Primers , Humans , Phylogeny , Reproducibility of Results
3.
Forensic Sci Int Genet ; 9: 150-61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24528593

ABSTRACT

Forensic DNA Phenotyping or 'DNA intelligence' tools are expected to aid police investigations and find unknown individuals by providing information on externally visible characteristics of unknown suspects, perpetrators and missing persons from biological samples. This is especially useful in cases where conventional DNA profiling or other means remain non-informative. Recently, we introduced the HIrisPlex system, capable of predicting both eye and hair colour from DNA. In the present developmental validation study, we demonstrate that the HIrisPlex assay performs in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines providing an essential prerequisite for future HIrisPlex applications to forensic casework. The HIrisPlex assay produces complete profiles down to only 63 pg of DNA. Species testing revealed human specificity for a complete HIrisPlex profile, while only non-human primates showed the closest full profile at 20 out of the 24 DNA markers, in all animals tested. Rigorous testing of simulated forensic casework samples such as blood, semen, saliva stains, hairs with roots as well as extremely low quantity touch (trace) DNA samples, produced complete profiles in 88% of cases. Concordance testing performed between five independent forensic laboratories displayed consistent reproducible results on varying types of DNA samples. Due to its design, the assay caters for degraded samples, underlined here by results from artificially degraded DNA and from simulated casework samples of degraded DNA. This aspect was also demonstrated previously on DNA samples from human remains up to several hundreds of years old. With this paper, we also introduce enhanced eye and hair colour prediction models based on enlarged underlying databases of HIrisPlex genotypes and eye/hair colour phenotypes (eye colour: N = 9188 and hair colour: N = 1601). Furthermore, we present an online web-based system for individual eye and hair colour prediction from full and partial HIrisPlex DNA profiles. By demonstrating that the HIrisPlex assay is fully compatible with the SWGDAM guidelines, we provide the first forensically validated DNA test system for parallel eye and hair colour prediction now available to forensic laboratories for immediate casework application, including missing person cases. Given the robustness and sensitivity described here and in previous work, the HIrisPlex system is also suitable for analysing old and ancient DNA in anthropological and evolutionary studies.


Subject(s)
DNA/genetics , Eye Color/genetics , Forensic Genetics , Hair Color/genetics , Alleles , Blood Chemical Analysis , DNA/isolation & purification , Genotype , Hair/chemistry , Heterozygote , Humans , Polymorphism, Single Nucleotide , Saliva/chemistry , Semen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...