Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(25): 255002, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-30865943

ABSTRACT

We report on density functional theory calculations that have been performed to systematically investigate the hydrogen-surface interaction as a function of surface orientation. The interactions that were analyzed include stable atomic adsorption sites, molecular hydrogen dissociation and absorption energies, migration pathways and barriers on tungsten surfaces, and the saturation coverage limits on the (1 1 1) surface. Stable hydrogen adsorption sites were found for all surfaces. For the reconstructed W(1 0 0), there are two primary adsorption sites: namely, the long-bridge and short-bridge sites. The threefold hollow site (3F) was found to be the most stable for W(1 1 0), while the bond-centered site between the first and second layer was found to be most stable for the W(1 1 1) surface. No bound adsorption sites for H2 molecules were found for the W surfaces. Hydrogen (H) migration on both the (1 0 0) and (1 1 0) surfaces is found to have preferred pathways for 1D motion, whereas the smallest migration barrier for net migration of H on the W(1 1 1) surface leads to 2D migration. Although weaker H interactions are predicted for the W(1 1 1) surface compared to the (1 0 0) or (1 1 0) surfaces, we observe higher H surface concentrations of Θ = 4.0 at zero K, possibly due to the corrugated surface structure. These results provide insight into H adsorption, surface saturation coverage and migration mechanisms necessary to describe the evolution from the dilute limit to concentrated coverages of H.

2.
J Phys Condens Matter ; 25(22): 225503, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23673396

ABSTRACT

Our first-principles calculations show that the ordering of stoichiometric cation vacancies in Ga2Se3 has a large influence on the bandgap, up to 0.55 eV. Therein, the zigzag-line vacancy-ordered Ga2Se3 has the maximum bandgap (∼2.56 eV direct bandgap), and the straight-line vacancy-ordered Ga2Se3 has the minimum bandgap (∼1.99 eV indirect bandgap) at 0 K, according to scGW calculations. The bandgap difference (0.55 eV) is almost the same for normal density functional theory (DFT) calculations, hybrid DFT calculations and GW calculations. The calculation results are consistent with the experimental bandgap range of 2.0-2.6 eV at room temperature. Also, hydrostatic pressure (<9 GPa) tends to increase the bandgap, consistent with the experiments in the literature.

3.
J Phys Condens Matter ; 24(41): 415404, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-23006432

ABSTRACT

Bubble nucleation and growth is responsible for swelling in metallic fuels such as U-Zr. Computational modeling is useful for understanding and ultimately developing mitigation strategies for the swelling behavior of the fuel. However, the relevant fundamental parameters are not currently available. In our previous work, the formation energy and migration barrier of uranium vacancies and interstitials in α U have been obtained by first-principles calculations, and the calculated diffusion activation energy agrees reasonably well with the experimental results, within 0.1 eV (Huang and Wirth 2011 J. Phys.: Condens. Matter 23 205402). In this paper, the formation energy and migration barrier of Xe, Zr, Pu, in addition to the binding energy of small vacancy clusters, Xe-vacancy clusters, and small interstitial clusters are investigated. These are among the essential data essential for the analysis and computational modeling of swelling in metallic nuclear fuel.

4.
J Phys Condens Matter ; 24(9): 095001, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22274988

ABSTRACT

To develop a model system containing regularly spaced misfit dislocations for studies of the radiation resistance of nanoscale defects, epitaxial thin films of Cr, Mo, and Cr(x)Mo(1-x) alloys were deposited on MgO(001) by molecular beam epitaxy. Film compositions were chosen to vary the lattice mismatch with MgO. The film structure was investigated by x-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and scanning transmission electron microscopy (STEM). Epitaxial films with reasonably high crystalline quality and abrupt interfaces were achieved at a relatively low deposition temperature, as confirmed by STEM. However, it was found by XRD and RBS in the channeling geometry that increasing the Mo content of the CrMo alloy films degraded the crystalline quality, despite the improved lattice match with MgO. XRD rocking curve data indicated that regions of different crystalline order may be present within the films with higher Mo content. This is tentatively ascribed to spinodal decomposition into Cr-rich and Mo-rich regions, as predicted by the Cr(x)Mo(1-x) phase diagram.


Subject(s)
Alloys/chemistry , Chromium/chemistry , Molybdenum/chemistry , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...