Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 341, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36991092

ABSTRACT

Hyperspectral imaging and spectral analysis quantifies fluorophore concentration during fluorescence-guided surgery1-6. However, acquisition of the multiple wavelengths required to implement these methods can be time-consuming and hinder surgical workflow. To this end, a snapshot hyperspectral imaging system capable of acquiring 64 channels of spectral data simultaneously was developed for rapid hyperspectral imaging during neurosurgery. The system uses a birefringent spectral demultiplexer to split incoming light and redirect wavelengths to different sections of a large format microscope sensor. Its configuration achieves high optical throughput, accepts unpolarized input light and exceeds channel count of prior image-replicating imaging spectrometers by 4-fold. Tissue-simulating phantoms consisting of serial dilutions of the fluorescent agent characterize system linearity and sensitivity, and comparisons to performance of a liquid crystal tunable filter based hyperspectral imaging device are favorable. The new instrument showed comparable, if not improved, sensitivity at low fluorophore concentrations; yet, acquired wide-field images at more than 70-fold increase in frame rate. Image data acquired in the operating room during human brain tumor resection confirm these findings. The new device is an important advance in achieving real-time quantitative imaging of fluorophore concentration for guiding surgery.


Subject(s)
Brain Neoplasms , Neurosurgery , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Protoporphyrins , Optical Imaging/methods , Fluorescent Dyes
2.
World Neurosurg ; 149: 195-203.e4, 2021 05.
Article in English | MEDLINE | ID: mdl-33588080

ABSTRACT

BACKGROUND: Tumors that take up and metabolize 5-aminolevulinic acid emit bright pink fluorescence when illuminated with blue light, aiding surgeons in identifying the margin of resection. The adoption of this method is hindered by the blue light illumination, which is too dim to safely operate under and therefore necessitates switching back and forth from white-light mode. The aim of this study was to examine the addition of an optimized secondary illuminant adapter to improve usability of blue-light mode without degrading tumor contrast. METHODS: Color science methods were used to evaluate the color of the secondary illuminant and its impact on color rendering index as well as the tumor-to-background color contrast in data collected from 7 patients with high-grade gliomas (World Health Organization grade III and IV). A secondary illuminant adapter was built to provide 475-600 nm light the intensity of which can be controlled by the surgeon and was evaluated in 2 additional patients. RESULTS: Secondary illuminant color had opposing effects on color rendering index and tumor-to-background color contrast; providing surgeon control of intensity allows this trade-off to be balanced in real time. Demonstration in 2 high-grade glioma cases confirms this, showing that additional visibility adds value when intensity can be controlled by the surgeon. CONCLUSIONS: Addition of a secondary illuminant may mitigate surgeon complaints that the operative field is too dark under the blue light illumination required for 5-aminolevulinic acid fluorescence guidance by providing improved color rendering index without completely sacrificing tumor-to-background color contrast.


Subject(s)
Aminolevulinic Acid/metabolism , Brain Neoplasms/metabolism , Lighting/methods , Optical Imaging/methods , Photosensitizing Agents/metabolism , Surgery, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Humans , Video-Assisted Surgery/methods
3.
Biomed Opt Express ; 11(8): 4306-4315, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32923044

ABSTRACT

Fluorescence-guided surgery (FGS) enhances intraoperative visualization of tumors to maximize safe resection, and quantitative fluorescence imaging (qFI) of protoporphyrin IX (PpIX) has provided additional information for guidance during intracranial tumor surgery. Previous developments in fluorescence quantification have demonstrated that the depth of fluorescence signals can be estimated given known optical properties in a lab setting, and now with the work described here that these optical properties can be determined in vivo in human brain tissue in the operating room (OR) during tumor resection procedures. More specifically, we report the first depth estimation of subsurface tumor intraoperatively, achieved with the combination of spatial frequency domain imaging (SFDI) for optical property measurement and red-light excitation of PpIX. We modified a commercial surgical microscope (Zeiss) with a digital light processing module (DLI Austin, TX) to modulate light from a xenon arc lamp to illuminate the field. White-light excitation and a liquid crystal tunable filter (LCTF Verispec) were used to measure diffuse reflectance at discrete wavelengths of 670 nm and 710 nm on a sCMOS camera. An illumination-side filter wheel allowed excitation of PpIX fluorescence at 405 nm and 635 nm, and the LCTF measured fluorescence emissions at 670 nm and 710 nm. Data acquisition and processing generated wide-field images of the depth of PpIX fluorescence within 1 minute in the OR. The ability of the clinical microscope to perform optical property mapping with SFDI and convert these wide-field estimates into images of the depth of fluorescence was tested in tissue simulating phantoms and in vivo during a craniotomy for brain tumor resection. Results indicate that wide-field optical property estimates with SFDI can be combined with depth sensing algorithms to produce maps of the depth of PpIX when exposed to red-light in the OR.

4.
Phys Med Biol ; 65(9): 095004, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32135522

ABSTRACT

This study demonstrates remote imaging for in vivo detection of radiation-induced tumor microstructural changes by tracking the diffusive spread of injected intratumor UV excited tattoo ink using Cherenkov-excited luminescence imaging (CELI). Micro-liter quantities of luminescent tattoo ink with UV absorption and visible emission were injected at a depth of 2 mm into mouse tumors prior to receiving a high dose treatment of radiation. X-rays from a clinical linear accelerator were used to excite phosphorescent compounds within the tattoo ink through Cherenkov emission. The in vivo phosphorescence was detected using a time-gated intensified CMOS camera immediately after injection, and then again at varying time points after the ink had broken down with the apoptotic tumor cells. Ex vivo tumors were imaged post-mortem using hyperspectral cryo-fluorescence imaging to quantify necrosis and compared to Cherenkov-excited light imaging of diffusive ink spread measured in vivo. Imaging of untreated control mice showed that ink distributions remained constant after four days with less than 3% diffusive spread measured using full width at 20% max. For all mice, in vivo CELI measurements matched within 12% of the values estimated by the high-resolution ex vivo sliced luminescence imaging of the tumors. The tattoo ink spread in treated mice was found to correlate well with the nonperfusion necrotic core volume (R2 = 0.92) but not well with total tumor volume changes (R2 = 0.34). In vivo and ex vivo findings indicate that the diffusive spread of the injected tattoo ink can be related to radiation-induced necrosis, independent of total tumor volume change. Tracking the diffusive spread of the ink allows for distinguishing between an increase in tumor size due to new cellular growth and an increase in tumor size due to edema. Furthermore, the imaging resolution of CELI allows for in vivo tracking of subtle microenvironmental changes which occur earlier than tumor shrinkage and this offers the potential for novel, minimally invasive radiotherapy response assay without interrupting a singular clinical workflow.


Subject(s)
Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Ink , Luminescence , Phantoms, Imaging , Animals , Cell Proliferation , Head and Neck Neoplasms/diagnostic imaging , Humans , Mice , Mice, Nude , Tumor Cells, Cultured , X-Rays , Xenograft Model Antitumor Assays
5.
Article in English | MEDLINE | ID: mdl-34446979

ABSTRACT

The ability to directly measure whole-body fluorescence can enable tracking of labeled cells, metastatic spread, and drug bio-distribution. We describe the development of a new hyperspectral imaging whole body cryo-macrotome designed to acquire 3-D fluorescence volumes in large specimens (whole animals) at high resolution. The use of hyperspectral acquisition provides full spectra at every voxel, enabling spectral decoupling of multiple fluorohpores and autofluorescence. We present examples of tissue spectra and spectral fitting in a rodent glioma xenograft.

6.
J Biomed Opt ; 24(8): 1-4, 2019 08.
Article in English | MEDLINE | ID: mdl-31401816

ABSTRACT

The potential to image subsurface fluorescent contrast agents at high spatial resolution has facilitated growing interest in short-wave infrared (SWIR) imaging for biomedical applications. The early but growing literature showing improvements in resolution in small animal models suggests this is indeed the case, yet to date, images from larger animal models that more closely recapitulate humans have not been reported. We report the first imaging of SWIR fluorescence in a large animal model. Specifically, we imaged the vascular kinetics of an indocyanine green (ICG) bolus injection during open craniotomy of a mini-pig using a custom SWIR imaging instrument and a clinical-grade surgical microscope that images ICG in the near-infrared-I (NIR-I) window. Fluorescence images in the SWIR were observed to have higher spatial and contrast resolutions throughout the dynamic sequence, particularly in the smallest vessels. Additionally, vessels beneath a surface pool of blood were readily visualized in the SWIR images yet were obscured in the NIR-I channel. These first-in-large-animal observations represent an important translational step and suggest that SWIR imaging may provide higher spatial and contrast resolution images that are robust to the influence of blood.


Subject(s)
Angiography/methods , Brain/diagnostic imaging , Indocyanine Green , Spectrophotometry, Infrared/methods , Animals , Contrast Media/pharmacology , Fluorescent Dyes , Microscopy, Fluorescence/methods , Optical Imaging/methods , Swine , Swine, Miniature
7.
J Biophotonics ; 12(5): e201800271, 2019 05.
Article in English | MEDLINE | ID: mdl-30358162

ABSTRACT

The rate of complete resection of glioma has improved with the introduction of 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) fluorescence image guidance. Surgical outcomes are further enhanced when the fluorescence signal is decoupled from the intrinsic tissue optical absorption and scattering obtained from diffuse reflectance measurements, yielding the absolute PpIX concentration, [PpIX]. Spatial frequency domain imaging was used previously to measure [PpIX] in near-surface tumors under blue fluorescence excitation. Here, we extend this to subsurface [PpIX] fluorescence under red-light excitation. The decay rate of the modulation amplitude of the fluorescence signal was used to calculate the PpIX depth, which was then applied in a forward diffusion model to estimate [PpIX] at depth. For brain-like optical properties in phantoms with PpIX fluorescent inclusions, the depth can be recovered up to depths of 9.5 mm ± 0.4 mm, with [PpIX] ranging from 5 to 15 µg/mL within an average deviation of 15% from the true [PpIX] value.


Subject(s)
Glioma/diagnostic imaging , Glioma/surgery , Optical Imaging/methods , Surgery, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Cell Line, Tumor , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...