Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Zool ; 63(4): 421-431, 2017 Aug.
Article in English | MEDLINE | ID: mdl-29492002

ABSTRACT

Most birds engage in extrapair copulations despite great differences across and within species. Besides cost and benefit considerations of the two sex environmental factors have been found to alter mating strategies within or between populations and/or over time. For socially monogamous species, the main advantage that females might gain from mating with multiple males is probably increasing their offspring's genetic fitness. Since male (genetic) quality is mostly not directly measurable for female birds, (extrapair) mate choice is based on male secondary traits. In passerines male song is such a sexual ornament indicating male phenotypic and/or genetic quality and song repertoires seem to affect female mate choice in a number of species. Yet their role in extrapair mating behavior is not well understood. In this study, we investigated the proportion of extrapair paternity (EPP) in a population of common nightingales Luscinia megarhynchos. We found that EPP rate was rather high (21.5% of all offspring tested) for a species without sexual dimorphism and high levels of paternal care. Furthermore, the occurrence of EPP was strongly related to the spatial distribution of male territories with males settling in densely occupied areas having higher proportions of extrapair young within their own brood. Also, song repertoire size affected EPP: here larger repertoires of social mates were negatively related to the probability of being cuckolded. When directly comparing repertoires sizes of social and extrapair mates, extrapair mates tended to have larger repertoires. We finally discuss our results as a hint for a flexible mating strategy in nightingales where several factors-including ecological as well as male song features-need to be considered when studying reproductive behavior in monogamous species with complex song.

2.
Hum Mol Genet ; 19(5): 848-60, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20015959

ABSTRACT

Parathyroid hormone-like hormone (PTHLH) is an important chondrogenic regulator; however, the gene has not been directly linked to human disease. We studied a family with autosomal-dominant Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation with breakpoints (BPs) upstream of PTHLH on chromosome 12p11.2 and a disrupted KCNB2 on 8q13. We sequenced the BPs and identified a highly conserved Activator protein 1 (AP-1) motif on 12p11.2, together with a C-ets-1 motif translocated from 8q13. AP-1 and C-ets-1 bound in vitro and in vivo at the derivative chromosome 8 breakpoint [der(8) BP], but were differently enriched between the wild-type and BP allele. We differentiated fibroblasts from BDE patients into chondrogenic cells and found that PTHLH and its targets, ADAMTS-7 and ADAMTS-12 were downregulated along with impaired chondrogenic differentiation. We next used human and murine chondrocytes and observed that the AP-1 motif stimulated, whereas der(8) BP or C-ets-1 decreased, PTHLH promoter activity. These results are the first to identify a cis-directed PTHLH downregulation as primary cause of human chondrodysplasia.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 8/genetics , Down-Regulation , Fingers/abnormalities , Parathyroid Hormone-Related Protein/genetics , Regulatory Sequences, Nucleic Acid/genetics , Toes/abnormalities , Translocation, Genetic , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAMTS7 Protein , Animals , Foot Deformities, Congenital/genetics , Hand Deformities, Congenital/genetics , Humans , Mice
3.
Am J Med Genet A ; 131(3): 265-72, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15534873

ABSTRACT

We describe two unrelated patients with cytogenetically visible deletions of 21q22.2-q22.3 and mild phenotypes. Both patients presented minor dysmorphic features including thin marfanoid build, facial asymmetry, downward-slanting palpebral fissures, depressed nasal bridge, small nose with bulbous tip, and mild mental retardation (MR). FISH and molecular studies indicated common deleted areas but different breakpoints. In patient 1, the breakpoint was fine mapped to a 5.2 kb interval between exon 5 and exon 8 of the ETS2 gene. The subtelomeric FISH probe was absent on one homologue 21 indicating a terminal deletion spanning approximately 7.9 Mb in size. In patient 2, the proximal breakpoint was determined to be 300-700 kb distal to ETS2, and the distal breakpoint 2.5-0.3 Mb from the 21q telomere, indicating an interstitial deletion sized approximately 4.7-7.3 Mb. The 21q- syndrome is rare and typically associated with a severe phenotype, but different outcomes depending on the size and location of the deleted area have been reported. Our data show that monosomy 21q of the area distal to the ETS2 gene, representing the terminal 7.9 Mb of 21q, may result in mild phenotypes comprising facial anomalies, thin marfanoid build, and mild MR, with or without signs of holoprosencephaly.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 21 , Base Sequence , DNA Primers , Female , Humans , In Situ Hybridization, Fluorescence , Infant, Newborn , Karyotyping , Male , Monosomy , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...