Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Water Sci Technol ; 60(1): 201-10, 2009.
Article in English | MEDLINE | ID: mdl-19587417

ABSTRACT

The effluent of a 500 kW biogas plant is treated with a solid separation, a micro filtration and a reverse osmosis to achieve nutrient recovery and an effluent quality which should meet disposal quality into public water bodies. After the reverse osmosis, the ammonium concentration is still high (NH(4)-N = 467 mg/l), amongst other cations (K+ = 85 mg/l; Na+ = 67 mg/l; Mg2+ = 0.74 mg/l; Ca2+= 1.79 mg/l). The aim of this study was to remove this ammonium by ion exchange. Acidic gel cation exchange resins and clinoptilolite were tested in column experiments to evaluate their capacity, flow rates and pH. Amberjet 1,500 H was the most efficient resin, 57 BV of the substrate could be treated, 1.97 mol NH4-N/l resin were removed. The ammonium removal was more than 99% and the quality of the effluent was very satisfactory (NH4-N < 2 mg/l). The breakthrough of the observed parameters happened suddenly, the order was sodium-pH-ammonium-potassium. The sharp increase of the pH facilitates the online control, while the change in conductivity is less significant. A regeneration with 3 bed volumes of 2 M HCl recovered 91.7% of the original cation exchange capacity.


Subject(s)
Bioreactors/microbiology , Chromatography, Ion Exchange/methods , Quaternary Ammonium Compounds/isolation & purification , Waste Disposal, Fluid/methods , Anaerobiosis , Hydrogen-Ion Concentration
2.
J Hazard Mater ; 163(1): 43-52, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-18657361

ABSTRACT

The production of manufactured gas at a site in Vienna, Austria led to the contamination of soil and groundwater with various pollutants including PAHs, hydrocarbons, phenols, BTEX, and cyanide. The site needs to be remediated to alleviate potential impacts to the environment. The chosen remediation concept includes the excavation of the core contaminated site and the setup of a hydraulic barrier to protect the surrounding aquifer. The extracted groundwater will be treated on-site. To design the foreseen pump-and-treat system, a pilot-scale plant was built and operated for 6 months. The scope of the present study was to test the effectiveness of different process steps, which included an aerated sedimentation basin, a submerged fixed film reactor (SFFR), a multi-media filter, and an activated carbon filter. The hydraulic retention time (HRT) was 7.0 h during normal flow conditions and 3.5h during high flow conditions. The treatment system was effective in reducing the various organic and inorganic pollutants in the pumped groundwater. However, it was also demonstrated that appropriate pre-treatment was essential to overcome problems with clogging due to precipitation of tar and sulfur compounds. The reduction of the typical contaminants, PAHs and BTEX, was more than 99.8%. All water quality parameters after treatment were below the Austrian legal requirements for discharge into public water bodies.


Subject(s)
Gases/chemistry , Physics , Water Purification/instrumentation , Water Purification/methods , Biodegradation, Environmental , Pilot Projects , Water/analysis , Water/chemistry , Water Pollutants/isolation & purification
3.
Water Sci Technol ; 58(7): 1483-9, 2008.
Article in English | MEDLINE | ID: mdl-18957763

ABSTRACT

A comparison of stillage treatment options for large-scale bioethanol plants was based on the data of an existing plant producing approximately 200,000 t/yr of bioethanol and 1,400,000 t/yr of stillage. Animal feed production--the state-of-the-art technology at the plant--was compared to anaerobic digestion. The latter was simulated in two different scenarios: digestion in small-scale biogas plants in the surrounding area versus digestion in a large-scale biogas plant at the bioethanol production site. Emphasis was placed on a holistic simulation balancing chemical parameters and calculating logistic algorithms to compare the efficiency of the stillage treatment solutions. For central anaerobic digestion different digestate handling solutions were considered because of the large amount of digestate. For land application a minimum of 36,000 ha of available agricultural area would be needed and 600,000 m(3) of storage volume. Secondly membrane purification of the digestate was investigated consisting of decanter, microfiltration, and reverse osmosis. As a third option aerobic wastewater treatment of the digestate was discussed. The final outcome was an economic evaluation of the three mentioned stillage treatment options, as a guide to stillage management for operators of large-scale bioethanol plants.


Subject(s)
Animal Feed , Bioreactors , Ethanol/metabolism , Algorithms , Anaerobiosis , Energy-Generating Resources/economics
SELECTION OF CITATIONS
SEARCH DETAIL