Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Popul Biol ; 158: 139-149, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871089

ABSTRACT

The introduction of the spatial Lambda-Fleming-Viot model (ΛV) in population genetics was mainly driven by the pioneering work of Alison Etheridge, in collaboration with Nick Barton and Amandine Véber about ten years ago (Barton et al., 2010; Barton et al., 2013). The ΛV model provides a sound mathematical framework for describing the evolution of a population of related individuals along a spatial continuum. It alleviates the "pain in the torus" issue with Wright and Malécot's isolation by distance model and is sampling consistent, making it a tool of choice for statistical inference. Yet, little is known about the potential connections between the ΛV and other stochastic processes generating trees and the spatial coordinates along the corresponding lineages. This work focuses on a version of the ΛV whereby lineages move rapidly over small distances. Using simulations, we show that the induced ΛV tree-generating process is well approximated by a birth-death model. Our results also indicate that Brownian motions modelling the movements of lines of descent along birth-death trees do not generally provide a good approximation of the ΛV due to habitat boundaries effects that play an increasingly important role in the long run. Accounting for habitat boundaries through reflected Brownian motions considerably increases the similarity to the ΛV model however. Finally, we describe efficient algorithms for fast simulation of the backward and forward in time versions of the ΛV model.


Subject(s)
Genetics, Population , Models, Genetic , Stochastic Processes
2.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38895258

ABSTRACT

Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In fact, existing probabilistic models in phylogeography or spatial population genetics generally do not provide an adequate framework to define velocity in a relevant manner. For instance, the very concept of instantaneous speed simply does not exist under one of the most popular approaches that models the evolution of spatial coordinates as Brownian trajectories running along a phylogeny [30]. Here, we introduce a new family of models - the so-called "Phylogenetic Integrated Velocity" (PIV) models - that use Gaussian processes to explicitly model the velocity of evolving lineages instead of focusing on the fluctuation of spatial coordinates over time. We describe the properties of these models and show an increased accuracy of velocity estimates compared to previous approaches. Analyses of West Nile virus data in the U.S.A. indicate that PIV models provide sensible predictions of the dispersal of evolving pathogens at a one-year time horizon. These results demonstrate the feasibility and relevance of predictive phylogeography in monitoring epidemics in time and space.

3.
Theor Popul Biol ; 146: 15-28, 2022 08.
Article in English | MEDLINE | ID: mdl-35662574

ABSTRACT

We revisit the Spatial Λ-Fleming-Viot process introduced in Barton and Kelleher (2010). Particularly, we are interested in the time T0 to the most recent common ancestor for two lineages. We distinguish between the cases where the process acts on the two-dimensional plane and on a finite rectangle. Utilizing a differential equation linking T0 with the physical distance between the lineages, we arrive at computationally efficient and reasonably accurate approximation schemes for both cases. Furthermore, our analysis enables us to address the question of whether the genealogical process of the model "comes down from infinity", which has been partly answered before in Véber and Wakolbinger (2015).


Subject(s)
Genetics, Population
4.
Theor Popul Biol ; 130: 94-105, 2019 12.
Article in English | MEDLINE | ID: mdl-31330138

ABSTRACT

We study the evolution of the population genealogy in the classic neutral Moran Model of finite size n∈N and in discrete time. The stochastic transformations that shape a Moran population can be realized directly on its genealogy and give rise to a process on a state space consisting of n-sized binary increasing trees. We derive a number of properties of this process, and show that they are in agreement with existing results on the infinite-population limit of the Moran Model. Most importantly, this process admits time reversal, which makes it possible to simplify the mechanisms determining state changes, and allows for a thorough investigation of the Most Recent Common Ancestorprocess.


Subject(s)
Biological Evolution , Genealogy and Heraldry , Genetics, Population , Markov Chains , Models, Genetic
5.
PLoS One ; 14(3): e0213278, 2019.
Article in English | MEDLINE | ID: mdl-30865674

ABSTRACT

Recent findings established a link between DNA sequence composition and interphase chromatin architecture and explained the evolutionary conservation of TADs (Topologically Associated Domains) and LADs (Lamina Associated Domains) in mammals. This prompted us to analyse conformation capture and recombination rate data to study the relationship between chromatin architecture and recombination landscape of human and mouse genomes. The results reveal that: (1) low recombination domains and blocks of elevated linkage disequilibrium tend to coincide with TADs and isochores, indicating co-evolving regulatory elements and genes in insulated neighbourhoods; (2) double strand break (DSB) and recombination frequencies increase in the short loops of GC-rich TADs, whereas recombination cold spots are typical of LADs and (3) the binding and loading of proteins, which are critical for DSB and meiotic recombination (SPO11, DMC1, H3K4me3 and PRMD9) are higher in GC-rich TADs. One explanation for these observations is that the occurrence of DSB and recombination in meiotic cells are associated with compositional and epigenetic features (genomic code) that influence DNA stiffness/flexibility and appear to be similar to those guiding the chromatin architecture in the interphase nucleus of pre-leptotene cells.


Subject(s)
Chromatin/genetics , Chromosomes, Mammalian/genetics , Genomics/methods , Histones/genetics , Homologous Recombination , Meiosis , Animals , Chromatin/chemistry , Chromatin/metabolism , DNA Breaks, Double-Stranded , Humans , Isochores , Mice
6.
Theor Popul Biol ; 124: 41-50, 2018 12.
Article in English | MEDLINE | ID: mdl-30243857

ABSTRACT

We revisit the classical, and introduce a novel, concept of two-locus linkage disequilibrium (LD). In contrast to defining haplotypes as allele combinations at two marker loci, we concentrate on the clustering of a sample of chromosomes induced by their coalescent genealogy. The root of a binary coalescent tree defines two clusters of chromosomes, each one of them containing the left and right descendants of the root. At two different loci this assignment may be different as a result of recombination. We show that the proportion of shared chromosomes among clusters at two different loci, measured by the squared correlation, constitutes a natural measure of LD. We call this topological LD (tLD) since it is induced by the topology of the coalescent tree. We find that it is, on average, larger than classical LD for any given distance between loci. Furthermore, tLD has a smaller coefficient of variation, which should provide an advantage, compared to the use of classical LD, for any kind of mapping purposes. We conclude with a practical application to the LCT region in human populations.


Subject(s)
Genetics, Population , Linkage Disequilibrium/genetics , Models, Genetic , Alleles , Chromosomes , Computer Simulation , Genealogy and Heraldry , Genetic Variation , Haplotypes , Markov Chains , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...