Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 28(6): 1225-33, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25882583

ABSTRACT

Ecological networks incorporate myriad biotic interactions that determine the selection pressures experienced by the embedded populations. We argue that within food webs, the negative scaling of abundance with body mass and foraging theory predict that the selective advantages of larger egg size should be smaller for sit-and-wait than active-hunting generalist predators, leading to the evolution of a difference in egg size between them. Because body mass usually scales negatively with predator abundance and constrains predation rate, slightly increasing egg mass should simultaneously allow offspring to feed on more prey and escape from more predators. However, the benefits of larger offspring would be relatively smaller for sit-and-wait predators because (i) due to their lower mobility, encounters with other predators are less common, and (ii) they usually employ a set of alternative hunting strategies that help to subdue relatively larger prey. On the other hand, for active predators, which need to confront prey as they find them, body-size differences may be more important in subduing prey. This difference in benefits should lead to the evolution of larger egg sizes in active-hunting relative to sit-and-wait predators. This prediction was confirmed by a phylogenetically controlled analysis of 268 spider species, supporting the view that the structure of ecological networks may serve to predict relevant selective pressures acting on key life history traits.


Subject(s)
Biological Evolution , Food Chain , Ovum/cytology , Predatory Behavior/physiology , Spiders/genetics , Spiders/physiology , Animals , Body Size
2.
Bull Entomol Res ; 98(3): 249-55, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18439342

ABSTRACT

Generalist predators contribute to pest suppression in agroecosystems. Spider communities, which form a substantial fraction of the generalist predator fauna in arable land, are characterized by two functional groups: web-building and cursorial (non-web-building) species. We investigated the relative impact of these two functional groups on a common pest (Sitobion avenae, Aphididae) in wheat by combining a molecular technique that revealed species-specific aphid consumption rates with a factorial field experiment that analyzed the impact, separately and together, of equal densities of these two spider functional groups on aphid population growth. Only cursorial spiders retarded aphid population growth in our cage experiment, but this effect was limited to the initial aphid-population growth period and low-to-intermediate aphid densities. The molecular analysis, which used aphid-specific primers to detect aphid DNA in predator species, detected the highest proportion of aphid-consuming individuals in two cursorial spiders: the foliage-dwelling Xysticus cristatus (Thomisidae) and the ground-active Pardosa palustris (Lycosidae). The results suggest that manipulating the community composition in favour of pest-consuming functional groups may be more important for improving biological control than fostering predator biodiversity per se. Agricultural management practices that specifically foster effective species or functional groups (e.g. mulching for cursorial spiders) should receive more attention in low-pesticide farming systems.


Subject(s)
Aphids/physiology , Behavior, Animal , Food Chain , Spiders/physiology , Triticum/parasitology , Animals , DNA/chemistry , Female , Male , Population Growth , Species Specificity
3.
Am Nat ; 157(3): 262-81, 2001 Mar.
Article in English | MEDLINE | ID: mdl-18707289

ABSTRACT

Although more consensus is now emerging on the magnitude and frequency of cascading trophic effects in aquatic communities, the debate over their terrestrial counterparts continues. We used meta-analysis to analyze field experiments on trophic cascades in terrestrial arthropod-dominated food webs to evaluate the overall magnitude of trophic cascades and conditions affecting their occurrence and strength. We found extensive support for the presence of trophic cascades in terrestrial communities. In the majority of experiments, predator removal led to increased densities of herbivorous insects and higher levels of plant damage. Cascades in which removing predators led to decreased herbivory also were detected but were less frequent and weaker, suggesting a predominantly three-trophic-level behavior of arthropod-dominated terrestrial food webs. Despite the clear evidence that cascades often decreased plant damage, residual effects of predation produced either no or only minimal changes in overall plant biomass. Agricultural systems and natural communities exhibited similarly strong effects of predation on herbivore abundance. However, resulting effects on plant damage and community-wide effects of trophic cascades on plant biomass usually were highly variable, and only in the managed agricultural systems did predators occasionally have strong indirect effects on plant biomass. Our meta-analysis suggests that the effects of trophic cascades on the biomass of primary producers are weaker in terrestrial than aquatic food webs.

SELECTION OF CITATIONS
SEARCH DETAIL
...