Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vet Parasitol ; 271: 68-75, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31303207

ABSTRACT

Theileria equi infection, exotic to the United States has reemerged through intravenous (iatrogenic) and tick-borne transmission. Surveillance at the US-Mexico border identified a new species, Theileria haneyi, (T. haneyiEP) (EP = Eagle Pass, Texas) which warranted additional investigation due to inability to detect by PCR targeting of T. equi ema-1 and EMA-1-cELISA validated for T. equi. Infection dynamics of T. haneyiEP were evaluated, including ability to superinfect in the presence of T. equi-Texas (T. equiTX), the isolate responsible for the reemergence of T. equi in the U S. Experimental infection with T. equiTX or T. haneyiEP revealed minimal clinical disease however, T. equiTX infection led to significantly greater neutropenia. Comparison of time to antibody detection following inoculation revealed significantly greater time to detectable anti-T. haneyiEP antibody (26.67 days post-inoculation (DPI)) than T. equiTX (11.67 DPI). Regardless of initial infection with either T. equiTX or T. haneyiEP, superinfection was established. Comparative analysis of antibody responses from a splenectomized horse infected with T. haneyiEP to that of a spleen intact horse infected with T. equiFL revealed a different antibody binding profile to T. haneyiEP, T. equiTX and T. equiFL merozoite antigen and limited shared antigen/cross-reactive antibody(s). Affinity purified T. equi EMA-1 and EMA-2 from T. equiFL were shown as targets for horse antibodies against T. haneyi. Data presented here show (1) T. haneyiEP can superinfect in the presence of T. equiTX infection and co-persists for minimally 25 months, (2) intravenous challenge with T. haneyi is subclinical, and (3) limited cross-reactive antibody between T. haneyiEP and T. equi includes reactivity to EMA-1 and EMA-2.


Subject(s)
Horse Diseases/immunology , Horse Diseases/pathology , Theileriasis/immunology , Theileriasis/pathology , Animals , Antibodies, Protozoan/blood , Horses , Texas , Theileria
2.
Int J Parasitol ; 48(9-10): 679-690, 2018 08.
Article in English | MEDLINE | ID: mdl-29885436

ABSTRACT

A novel apicomplexan parasite was serendipitously discovered in horses at the United States - Mexico border. Phylogenetic analysis based on 18S rDNA showed the erythrocyte-infective parasite to be related to, but distinct from, Theileria spp. in Africa, the most similar taxa being Theileria spp. from waterbuck and mountain zebra. The degree of sequence variability observed at the 18S rDNA locus also suggests the likely existence of additional cryptic species. Among described species, the genome of this novel equid Theileria parasite is most similar to that of Theileria equi, also a pathogen of horses. The estimated divergence time between the new Theileria sp. and T. equi, based on genomic sequence data, is greater than 33 million years. Average protein sequence divergence between them, at 23%, is greater than that of Theileria parva and Theileria annulata proteins, which is 18%. The latter two represent highly virulent Theileria spp. of domestic cattle, as well as of African and Asian wild buffalo, respectively, which differ markedly in pathology, host cell tropism, tick vector and geographical distribution. The extent of genome-wide sequence divergence, as well as significant morphological differences, relative to T. equi justify the classification of Theileria sp. as a new taxon. Despite the overall genomic divergence, the nine member equi merozoite antigen (EMA) superfamily, previously found as a multigene family only in T. equi, is also present in the novel parasite. Practically, significant sequence divergence in antigenic loci resulted in this undescribed Theileria sp. not being detectable using currently available diagnostic tests. Discovery of this novel species infective to equids highlights exceptional diversity within the genus Theileria, a finding with serious implications for apicomplexan parasite surveillance.


Subject(s)
Genomics , Horse Diseases/parasitology , Theileria/genetics , Theileriasis/parasitology , Animals , DNA, Protozoan/genetics , Evolution, Molecular , Female , Horses , Male , Phylogeny , RNA, Ribosomal, 18S/genetics , Theileria/isolation & purification , Theileria/pathogenicity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...