Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(2): e0247684, 2021.
Article in English | MEDLINE | ID: mdl-33635895

ABSTRACT

Superoxide dismutase 1 (SOD1) is known to be involved in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS) and is therefore considered to be an important ALS drug target. Identifying potential drug leads that bind to SOD1 and characterizing their interactions by nuclear magnetic resonance (NMR) spectroscopy is complicated by the fact that SOD1 is a homodimer. Creating a monomeric version of SOD1 could alleviate these issues. A specially designed monomeric form of human superoxide dismutase (T2M4SOD1) was cloned into E. coli and its expression significantly enhanced using a number of novel DNA sequence, leader peptide and growth condition optimizations. Uniformly 15N-labeled T2M4SOD1 was prepared from minimal media using 15NH4Cl as the 15N source. The T2M4SOD1 monomer (both 15N labeled and unlabeled) was correctly folded as confirmed by 1H-NMR spectroscopy and active as confirmed by an in-gel enzymatic assay. To demonstrate the utility of this new SOD1 expression system for NMR-based drug screening, eight pyrimidine compounds were tested for binding to T2M4SOD1 by monitoring changes in their 1H NMR and/or 19F-NMR spectra. Weak binding to 5-fluorouridine (FUrd) was observed via line broadening, but very minimal spectral changes were seen with uridine, 5-bromouridine or trifluridine. On the other hand, 1H-NMR spectra of T2M4SOD1 with uracil or three halogenated derivatives of uracil changed dramatically suggesting that the pyrimidine moiety is the crucial binding component of FUrd. Interestingly, no change in tryptophan 32 (Trp32), the putative receptor for FUrd, was detected in the 15N-NMR spectra of 15N-T2M4SOD1 when mixed with these uracil analogs. Molecular docking and molecular dynamic (MD) studies indicate that interaction with Trp32 of SOD1 is predicted to be weak and that there was hydrogen bonding with the nearby aspartate (Asp96), potentiating the Trp32-uracil interaction. These studies demonstrate that monomeric T2M4SOD1 can be readily used to explore small molecule interactions via NMR.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Bromouracil/analogs & derivatives , Cloning, Molecular/methods , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Trifluridine/metabolism , Uridine/analogs & derivatives , Amyotrophic Lateral Sclerosis/genetics , Base Sequence , Bromouracil/metabolism , Drug Evaluation, Preclinical/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Folding , Proton Magnetic Resonance Spectroscopy/methods , Superoxide Dismutase-1/chemistry , Tryptophan/metabolism , Uridine/metabolism
2.
PLoS One ; 14(12): e0220215, 2019.
Article in English | MEDLINE | ID: mdl-31805043

ABSTRACT

To date more than 3700 genome-wide association studies (GWAS) have been published that look at the genetic contributions of single nucleotide polymorphisms (SNPs) to human conditions or human phenotypes. Through these studies many highly significant SNPs have been identified for hundreds of diseases or medical conditions. However, the extent to which GWAS-identified SNPs or combinations of SNP biomarkers can predict disease risk is not well known. One of the most commonly used approaches to assess the performance of predictive biomarkers is to determine the area under the receiver-operator characteristic curve (AUROC). We have developed an R package called G-WIZ to generate ROC curves and calculate the AUROC using summary-level GWAS data. We first tested the performance of G-WIZ by using AUROC values derived from patient-level SNP data, as well as literature-reported AUROC values. We found that G-WIZ predicts the AUROC with <3% error. Next, we used the summary level GWAS data from GWAS Central to determine the ROC curves and AUROC values for 569 different GWA studies spanning 219 different conditions. Using these data we found a small number of GWA studies with SNP-derived risk predictors that have very high AUROCs (>0.75). On the other hand, the average GWA study produces a multi-SNP risk predictor with an AUROC of 0.55. Detailed AUROC comparisons indicate that most SNP-derived risk predictions are not as good as clinically based disease risk predictors. All our calculations (ROC curves, AUROCs, explained heritability) are in a publicly accessible database called GWAS-ROCS (http://gwasrocs.ca). The G-WIZ code is freely available for download at https://github.com/jonaspatronjp/GWIZ-Rscript/.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , ROC Curve , Software , Databases, Genetic , Humans , Inheritance Patterns , Models, Statistical , Polymorphism, Single Nucleotide , Predictive Value of Tests , Risk Assessment/methods , Risk Factors
3.
Theranostics ; 4(9): 953-9, 2014.
Article in English | MEDLINE | ID: mdl-25057319

ABSTRACT

Analysis of the human metabolome has yielded valuable insights into health, disease and toxicity. However, the metabolic profile of complex biological fluids such as blood is highly dynamic and this has limited the discovery of robust biomarkers. Hair grows relatively slowly, and both endogenous compounds and environmental exposures are incorporated from blood into hair during growth, which reflects the average chemical composition over several months. We used hair samples to study the metabolite profiles of women with pregnancies complicated by fetal growth restriction (FGR) and healthy matched controls. We report the use of GC-MS metabolite profiling of hair samples for biomarker discovery. Unsupervised statistical analysis showed complete discrimination of FGR from controls based on hair composition alone. A predictive model combining 5 metabolites produced an area under the receiver-operating curve of 0.998. This is the first study of the metabolome of human hair and demonstrates that this biological material contains robust biomarkers, which may lead to the development of a sensitive diagnostic tool for FGR, and perhaps more importantly, to stable biomarkers for a range of other diseases.


Subject(s)
Fetal Growth Retardation/diagnosis , Hair/metabolism , Metabolome , Adult , Biomarkers/metabolism , Case-Control Studies , Female , Humans , Infant, Newborn , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...