Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 79(11): 4589-4598, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37431651

ABSTRACT

BACKGROUND: In 2018, a sodium nitrite (SN)-based toxic bait for invasive wild pigs (hereafter wild pigs; Sus scrofa), was evaluated to determine its effectiveness in reducing local wild pig populations in Texas. Localized population reductions of >70% were achieved, but spillage of bait outside wild pig-specific feeders (bait stations) caused by feeding wild pigs resulted in the deaths of non-target animals. To evaluate risks to non-target animals, we tested whether bait presentation influenced the total amount of bait spilled by wild pigs and estimated the associated risk to non-target species. RESULTS: We found that bait spilled outside bait stations could be reduced by >90% when compacted in trays, as opposed to being manually crumbled into pieces. We documented a mean spill rate of 0.913 g of bait per wild pig. Conservative risk assessments for nine non-target species for which SN toxicity data exist indicate that there is relatively low risk of lethal exposure, apart from zebra finches (Taeniopygia guttata) and white mice. Our results indicate that there may be enough spilled bait per feeding wild pig to kill 9.5 or 3.5 individuals of these species, respectively. Other species assessed range from 0.002 to 0.406 potential mortalities per wild pig. CONCLUSION: We demonstrated that the amount of bait spilled by wild pigs during feeding and the associated risk to non-target animals can be minimized by presenting the bait compacted in trays within bait stations. We recommend that baits be tightly compacted and secured in bait stations to minimize risks to non-target animals from spilled bait by wild pigs. © 2023 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
Pest Manag Sci ; 77(4): 1616-1625, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33200879

ABSTRACT

BACKGROUND: Wild pigs (Sus scrofa) are a destructive invasive species throughout many regions of the world. In 2018, a field evaluation of an early prototype of a sodium nitrite (SN) toxic bait in the United States revealed wild pigs dropped large amounts of the toxic bait outside the pig-specific bait stations while feeding, and thus subsequent hazards for non-target animals. We modified the SN-toxic bait formulation, the design of the bait station, and the baiting strategy to reduce dropped bait. We tested the modifications in Queensland, Australia (December 2018), Alabama, USA (August 2019), and Texas, USA (March 2020) under differing climatic and seasonal conditions for one night. RESULTS: Cumulatively we found 161 carcasses of all age classes of wild pigs using systematic transects. Remote camera indices indicated high lethality for wild pigs, achieving population reductions of 76.3 to 90.4%. Wild pigs dropped only small particles of SN-toxic bait (average = 55.5 g per bait site), which represented a 19-fold decrease from the previous trial. Despite this reduction, we found three Australian ravens (Corvus coronoides) in Queensland, two Virginia opossums (Didelphis virginiana) in Alabama, and 35 granivorous-passerine birds (mostly dark-eyed juncos [Junco hyemalis]) in Texas dead from consuming the dropped bait. We did not detect any population-level effects for those species. CONCLUSION: Our modifications were effective at reducing populations of wild pigs, but the deaths of non-target species require further steps to minimize these hazards. Next steps will include evaluating various deterrent devices for birds the morning after SN-toxic bait has been offered. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Animals, Wild , Sus scrofa , Animals , Australia , Queensland , Sodium Nitrite , Swine , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...