Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 10(6): 25, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20884574

ABSTRACT

Where we look when we scan visual scenes is an old question that continues to inspire both fundamental and applied research. Recently, it has been reported that depth is an important variable in driving eye movements: the directions of spontaneous saccades tend to follow depth gradients, or, equivalently, surface tilts (L. Jansen, S. Onat, & P. König, 2009; M. Wexler & N. Ouarti, 2008). This has been found to hold for both simple and complex scenes and for a variety of depth cues. However, it is not known whether saccades are aligned with individual depth cues, or with a combination of depth cues. If saccades do follow a combination of depth cues, then it is interesting to ask whether this combination follows the same rules as the well-studied case of depth cue combination in conscious perception. We showed subjects surfaces inclined in depth, in which perspective and binocular disparity cues specified different plane orientations, with different degrees of both small and large conflict between the two sets of cues. We recorded subjects' spontaneous saccades while they scanned the scene, as well as their reports of perceived plane orientation. We found that distributions of spontaneous saccade directions followed the same pattern of depth cue combination as perceived surface orientation: a weighted linear combination of cues for small conflicts, and cue dominance for large conflicts. The weights assigned to the cues varied considerably from one subject to the next but were strongly correlated for saccades and perception; moreover, for both perception and saccades, cue weights could be modified by manipulating cue reliability in a way compatible with Bayesian theories of optimal cue combination. We also measured vergence, which allowed us to calculate the orientation of the plane fitted to points scanned in depth. Contrary to perception and saccades, vergence was dominated by a single cue, binocular disparity.


Subject(s)
Cues , Depth Perception/physiology , Eye Movements/physiology , Orientation/physiology , Vision Disparity/physiology , Adult , Female , Humans , Male , Middle Aged , Photic Stimulation/methods , Vision, Binocular/physiology
2.
Exp Brain Res ; 184(1): 61-70, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17717656

ABSTRACT

We studied the influence of perceived surface orientation on vergence accompanying a saccade while viewing an ambiguous stimulus. We used the slant rivalry stimulus, in which perspective foreshortening and disparity specified opposite surface orientations. This rivalrous configuration induces alternations of perceived surface orientation, while the slant cues remain constant. Subjects were able to voluntarily control their perceptual state while viewing the ambiguous stimulus. They were asked to make a saccade across the perceived slanted surface. Our data show that vergence responses closely approximated the vergence response predicted by the disparity cue, irrespective of voluntarily controlled perceived orientation. However, comparing the data obtained while viewing the ambiguous stimulus with data from an unambiguous stimulus condition (when disparity and perspective specified similar surface orientations) revealed an effect of perspective cues on vergence. Collectively our results show that depth cues rather than perceived depth govern vergence.


Subject(s)
Cues , Depth Perception/physiology , Saccades/physiology , Vision Disparity/physiology , Vision, Binocular/physiology , Attention/physiology , Convergence, Ocular , Fixation, Ocular , Form Perception , Humans , Optical Illusions , Orientation , Pattern Recognition, Visual , Photic Stimulation , User-Computer Interface , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...