Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 430, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31969568

ABSTRACT

The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of the electric field. The extreme temporal localization is utilized in a simple electronic circuit to record the waveforms of infrared to ultraviolet light fields. This form of petahertz-bandwidth field metrology gives access to both the modulated transition probability and its temporal offset from the laser field, providing sub-fs temporal precision in reconstructing the sub-cycle electronic response of a solid state structure.

2.
Phys Rev Lett ; 116(19): 197401, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27232043

ABSTRACT

We predict that a direct band gap semiconductor (GaAs) resonantly excited by a strong ultrashort laser pulse exhibits a novel regime: kicked anharmonic Rabi oscillations. In this regime, Rabi oscillations are strongly coupled to intraband motion, and interband transitions mainly take place when electrons pass near the Brillouin zone center where electron populations undergo very rapid changes. The asymmetry of the residual population distribution induces an electric current controlled by the carrier-envelope phase of the driving pulse. The predicted effects are experimentally observable using photoemission and terahertz spectroscopies.

3.
Small ; 11(14): 1703-10, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25408432

ABSTRACT

In this work, both experimental data and a model are presented on the coupling between living cells and graphene solution-gated field-effect transistors. Modified HEK 293 cells are successfully cultured on graphene transistor arrays and electrically accessed by the patch clamp method. Transistor recordings are presented, showing the opening and closing of voltage-gated potassium ion channels in the cell membrane. The experimental data is compared with the broadly used standard point-contact model. The ion dynamics in the cell-transistor cleft are analyzed to account for the differences between the model and the experimental data revealing a significant increase in the total ionic strength in the cleft. In order to describe the influence of the ion concentration resulting from the cell activity, the ion-sensitivity of graphene solution-gated field-effect transistors is investigated experimentally and modelled by considering the screening effect of the ions on the surface potential at the graphene/electrolyte interface. Finally, the model of the cell-transistor coupling is extended to include the effect of ion accumulation and ion sensitivity. The experimental data shows a very good agreement with this extended model, emphasizing the importance of considering the ion concentration in the cleft to properly understand the cell-transistor coupling.


Subject(s)
Electricity , Electronics , Graphite/chemistry , HEK293 Cells , Humans , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...