Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer ; 22(1): 150, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679783

ABSTRACT

Recent advances in immuno-oncology have opened up new and impressive treatment options for cancer. Notwithstanding, overcoming the limitations of the current FDA-approved therapies with monoclonal antibodies (mAbs) that block the PD-1/PD-L1 pathway continues to lead to the testing of multiple approaches and optimizations. Recently, a series of macrocyclic peptides have been developed that exhibit binding strengths to PD-L1 ranging from sub-micromolar to micromolar. In this study, we present the most potent non-antibody-based PD-1/PD-L1 interaction inhibitor reported to date. The structural and biological characterization of this macrocyclic PD-L1 targeting peptide provides the rationale for inhibition of both PD-1/PD-L1 and CD80/PD-L1 complexes. The IC50 and EC50 values obtained in PD-L1 binding assays indicate that the pAC65 peptide has potency equivalent to the current FDA-approved mAbs and may have similar activity to the BMS986189 peptide, which entered the clinical trial and has favorable safety and pharmacokinetic data. The data presented here delineate the generation of similar peptides with improved biological activities and applications not only in the field of cancer immunotherapy but also in other disorders related to the immune system.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Humans , Antibodies, Monoclonal/pharmacology , Immune Checkpoint Inhibitors , Peptides/pharmacology
2.
Acta Biochim Pol ; 69(3): 485-494, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35810485

ABSTRACT

In recent years, immunotherapy has been identified as an effective treatment method for high-risk neuroblastoma. A previous study demonstrated that an anti-GD2 ganglioside (GD2) mouse 14G2a monoclonal antibody (mAb) combined with a small molecule, i.e., an aurora A kinase inhibitor (MK-5108), significantly increased cytotoxicity against human neuroblastoma cells, as compared to monotherapy. This study aimed to demonstrate the mechanism of neuroblastoma cell death in vitro following the addition of an anti-GD2 human-mouse chimeric ch14.18/CHO mAb (presently used in clinics) and two aurora A inhibitors (MK-5108 and MK-8745). The effects of the aforementioned agents on neuroblastoma cells were determined by measuring the level of ATP, the level of apoptotic and necroptotic markers, and the activity of caspase 3/7. The results revealed that the ch14.18/CHO mAb decreased cellular ATP levels in the IMR-32 and CHP-134 neuroblastoma cell lines, similarly to the 14G2a mAb. Regarding ch14.18/CHO mAb treated IMR-32 cells, the observed cytotoxic effect was concomitant with induced caspase 3 cleavage, which indicated the induction of apoptosis in IMR-32 cells, but not in CHP-134 cells. Furthermore, the MK-5108 inhibitor induced apoptosis, as indicated by the increased cleavage of caspase 3 and increased activity of caspase 3/7. However, the presence of necroptosis was ruled out in MK-5108-treated IMR-32 and CHP-134 cells. In summary, the effects of the combination of ch14.18/CHO mAb and aurora A kinase inhibitors (MK-5108 and MK-8745) were shown to enhance apoptosis in IMR-32 cells compared to when used individually.


Subject(s)
Antineoplastic Agents , Neuroblastoma , Adenosine Triphosphate , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Aurora Kinase A , Caspase 3 , Cell Line, Tumor , Cyclohexanecarboxylic Acids , Gangliosides/metabolism , Humans , Mice , Neuroblastoma/drug therapy , Piperazines , Thiazoles
3.
Cancers (Basel) ; 11(7)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331108

ABSTRACT

The protein p53, known as the "Guardian of the Genome", plays an important role in maintaining DNA integrity, providing protection against cancer-promoting mutations. Dysfunction of p53 is observed in almost every cancer, with 50% of cases bearing loss-of-function mutations/deletions in the TP53 gene. In the remaining 50% of cases the overexpression of HDM2 (mouse double minute 2, human homolog) protein, which is a natural inhibitor of p53, is the most common way of keeping p53 inactive. Disruption of HDM2-p53 interaction with the use of HDM2 antagonists leads to the release of p53 and expression of its target genes, engaged in the induction of cell cycle arrest, DNA repair, senescence, and apoptosis. The induction of apoptosis, however, is restricted to only a handful of p53wt cells, and, generally, cancer cells treated with HDM2 antagonists are not efficiently eliminated. For this reason, HDM2 antagonists were tested in combinations with multiple other therapeutics in a search for synergy that would enhance the cancer eradication. This manuscript aims at reviewing the recent progress in developing strategies of combined cancer treatment with the use of HDM2 antagonists.

4.
FEBS J ; 286(7): 1360-1374, 2019 04.
Article in English | MEDLINE | ID: mdl-30715803

ABSTRACT

The p53 protein is engaged in the repair of DNA mutations and elimination of heavily damaged cells, providing anticancer protection. Dysregulation of p53 activity is a crucial step in carcinogenesis. This dysregulation is often caused by the overexpression of negative regulators of p53, among which MDM2 is the most prominent one. Antagonizing MDM2 with small molecules restores the activity of p53 in p53 wild-type (p53wt ) cells and thus provides positive outcomes in the treatment of p53wt cancers. Previously, we have reported the discovery of a panel of fluoro-substituted indole-based antagonists of MDM2. Here, we demonstrate the biological activity and stereoselectivity of the most active compound from this series. Both enantiomers of the esterified form of the compound, as well as its corresponding carboxylic acids, were found active in fluorescence polarization (FP) assay, nuclear magnetic resonance (NMR) and microscale thermophoresis (MST) assay, with Ki and KD values around 1 µm. From these four compounds, the esterified enantiomer (R)-5a was active in cells, which was evidenced by the increase of p53 levels, the induced expression of p53-target genes (CDKN1A and MDM2), the selective induction of cell cycle arrest, and selective growth inhibition of p53wt U-2 OS and SJSA-1 compared to p53del SAOS-2 cells. The analysis of the crystal structure of human MDM2 in complex with the compound (R)-6a (carboxylic acid of the active (R)-5a compound) revealed the classical three-finger binding mode. Altogether, our data demonstrate the activity of the compound and provide the structural basis for further structure optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/pathology , Cell Proliferation/drug effects , Indoles/pharmacology , Osteosarcoma/pathology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/chemistry , Apoptosis , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Halogenation , Humans , Indoles/chemistry , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Protein Binding , Protein Conformation , Proto-Oncogene Proteins c-mdm2/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
5.
Apoptosis ; 23(9-10): 492-511, 2018 10.
Article in English | MEDLINE | ID: mdl-30027525

ABSTRACT

The process of autophagy and its role in survival of human neuroblastoma cell cultures was studied upon addition of an anti-GD2 ganglioside (GD2) 14G2a mouse monoclonal antibody (14G2a mAb) and an aurora A kinase specific inhibitor, MK-5108. It was recently shown that combination of these agents significantly potentiates cytotoxicity against IMR-32 and CHP-134 neuroblastoma cells in vitro, as compared to the inhibitor used alone. In this study we gained mechanistic insights on autophagy in the observed cytotoxic effects exerted by both agents using cytotoxicity assays, RT-qPCR, immunoblotting, and autophagy detection methods. Enhancement of the autophagy process in the 14G2a mAb- and MK-5108-treated IMR-32 cells was documented by assessing autophagic flux. Application of a lysosomotropic agent-chloroquine (CQ) affected the 14G2a mAb- and MK-5108-stimulated autophagic flux. It is our conclusion that the 14G2a mAb (40 µg/ml) and MK-5108 inhibitor (0.1 µM) induce autophagy in IMR-32 cells. Moreover, the combinatorial treatment of IMR-32 cells with the 14G2a mAb and CQ significantly potentiates cytotoxic effect, as compared to CQ used alone. Most importantly, we showed that interfering with autophagy at its early and late step augments the 14G2a mAb-induced apoptosis, therefore we can conclude that inhibition of autophagy is the primary mechanism of the CQ-mediated sensitization to the 14G2a mAb-induced apoptosis. Although, there was no virtual stimulation of autophagy in the 14G2a mAb-treated CHP-134 neuroblastoma cells, we were able to show that PHLDA1 protein positively regulates autophagy and this process exists in a mutually exclusive manner with apoptosis in PHLDA1-silenced CHP-134 cells.


Subject(s)
Apoptosis/genetics , Aurora Kinase A/genetics , Autophagy/genetics , Neuroblastoma/genetics , Transcription Factors/genetics , Animals , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Aurora Kinase A/antagonists & inhibitors , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclohexanecarboxylic Acids/pharmacology , Gangliosides/antagonists & inhibitors , Gangliosides/genetics , Humans , Mice , Neuroblastoma/pathology , Thiazoles/pharmacology , Transcription Factors/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...