Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Aging Cell ; 22(9): e13928, 2023 09.
Article in English | MEDLINE | ID: mdl-37522798

ABSTRACT

Inhibition of glycogen breakdown blocks memory formation in young animals, but it stimulates the maintenance of the long-term potentiation, a cellular mechanism of memory formation, in hippocampal slices of old animals. Here, we report that a 2-week treatment with glycogen phosphorylase inhibitor BAY U6751 alleviated memory deficits and stimulated neuroplasticity in old mice. Using the 2-Novel Object Recognition and Novel Object Location tests, we discovered that the prolonged intraperitoneal administration of BAY U6751 improved memory formation in old mice. This was accompanied by changes in morphology of dendritic spines in hippocampal neurons, and by "rejuvenation" of hippocampal proteome. In contrast, in young animals, inhibition of glycogen degradation impaired memory formation; however, as in old mice, it did not alter significantly the morphology and density of cortical dendritic spines. Our findings provide evidence that prolonged inhibition of glycogen phosphorolysis improves memory formation of old animals. This could lead to the development of new strategies for treatment of age-related memory deficits.


Subject(s)
Glycogen Phosphorylase , Hippocampus , Mice , Animals , Hippocampus/metabolism , Glycogen Phosphorylase/metabolism , Memory Disorders/metabolism , Cognition , Glycogen/metabolism , Dendritic Spines/metabolism
2.
Mol Pharm ; 20(7): 3505-3518, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37283406

ABSTRACT

Madin-Darby canine kidney (MDCK) cells are widely used to study epithelial cell functionality. Their low endogenous drug transporter protein levels make them an amenable system to investigate transepithelial permeation and drug transporter protein activity after their transfection. MDCK cells display diverse phenotypic traits, and as such, laboratory-to-laboratory variability in drug permeability assessments is observed. Consequently, in vitro-in vivo extrapolation (IVIVE) approaches using permeability and/or transporter activity data require calibration. A comprehensive proteomic quantification of 11 filter-grown parental or mock-transfected MDCK monolayers from 8 different pharmaceutical laboratories using the total protein approach (TPA) is provided. The TPA enables estimations of key morphometric parameters such as monolayer cellularity and volume. Overall, metabolic liability to xenobiotics is likely to be limited for MDCK cells due to the low expression of required enzymes. SLC16A1 (MCT1) was the highest abundant SLC transporter linked to xenobiotic activity, while ABCC4 (MRP4) was the highest abundant ABC transporter. Our data supports existing findings that claudin-2 levels may be linked to tight junction modulation, thus impacting trans-epithelial resistance. This unique database provides data on more than 8000 protein copy numbers and concentrations, thus allowing an in-depth appraisal of the control monolayers used in each laboratory.


Subject(s)
Proteome , Proteomics , Animals , Dogs , Madin Darby Canine Kidney Cells , Proteome/metabolism , Tight Junctions/metabolism , Kidney/metabolism , Carrier Proteins/metabolism
3.
Cells ; 11(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36552831

ABSTRACT

HeberFERON, a co-formulation of Interferon (IFN)-α2b and IFN-γ, has effects on skin cancer and other solid tumors. It has antiproliferative effects over glioblastoma multiform (GBM) clones and cultured cell lines, including U-87 MG. Here, we report the first label-free quantitative proteomic and phospho-proteomic analyses to evaluate changes induced by HeberFERON after 72 h incubation of U-87 MG that can explain the effect on cellular proliferation. LC-MS/MS, functional enrichment and networking analysis were performed. We identified 7627 proteins; 122 and 211 were down- and up-regulated by HeberFERON (fold change > 2; p < 0.05), respectively. We identified 23,549 peptides (5692 proteins) and 8900 phospho-peptides; 523 of these phospho-peptides (359 proteins) were differentially modified. Proteomic enrichment showed IFN signaling and its control, direct and indirect antiviral mechanisms were the main modulated processes. Phospho-proteome enrichment displayed the cell cycle as one of the most commonly targeted events together with cytoskeleton organization; translation/RNA splicing, autophagy and DNA repair, as represented biological processes. There is a high interconnection of phosphoproteins in a molecular network; mTOR occupies a centric hub with interactions with translation machinery, cytoskeleton and autophagy components. Novel phosphosites and others with unknown biological functionality in key players in the aforementioned processes were regulated by HeberFERON and involved CDK and ERK kinases. These findings open new experimental hypotheses regarding HeberFERON action. The results obtained contribute to a better understanding of HeberFERON effector mechanisms in the context of GBM treatment.


Subject(s)
Glioblastoma , Humans , Chromatography, Liquid , Glioblastoma/metabolism , Interferon-alpha/pharmacology , Peptides , Proteomics/methods , Tandem Mass Spectrometry , Cell Line, Tumor
4.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361822

ABSTRACT

MAGE (melibiose-derived advanced glycation end-product) is the glycation product generated in the reaction of a model protein with melibiose. The in vivo analog accumulates in several tissues; however, its origin still needs explanation. In vitro MAGE is efficiently generated under dry conditions in contrast to the reaction carried in an aqueous solvent. Using liquid chromatography coupled with mass spectrometry, we analyzed the physicochemical properties and structures of myoglobin glycated with melibiose under different conditions. The targeted peptide analysis identified structurally different AGEs, including crosslinking and non-crosslinking modifications associated with lysine, arginine, and histidine residues. Glycation in a dry state was more efficient in the formation of structures containing an intact melibiose moiety (21.9%) compared to glycation under aqueous conditions (15.6%). The difference was reflected in characteristic fluorescence that results from protein structural changes and impact on a heme group of the model myoglobin protein. Finally, our results suggest that the formation of in vitro MAGE adduct is initiated by coupling melibiose to a model myoglobin protein. It is confirmed by the identification of intact melibiose moieties. The intermediate glycation product can further rearrange towards more advanced structures, including cross-links. This process can contribute to a pool of AGEs accumulating locally in vivo and affecting tissue biology.


Subject(s)
Glycation End Products, Advanced , Myoglobin , Myoglobin/chemistry , Glycation End Products, Advanced/metabolism , Melibiose , Lysine/metabolism , Glycosylation
5.
Cell Rep ; 40(13): 111428, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170818

ABSTRACT

Proteasome machinery is a major proteostasis control system in human cells, actively compensated upon its inhibition. To understand this compensation, we compared global protein landscapes upon the proteasome inhibition with carfilzomib, in normal fibroblasts, cells of multiple myeloma, and cancers of lung, colon, and pancreas. Molecular chaperones, autophagy, and endocytosis-related proteins are the most prominent vulnerabilities in combination with carfilzomib, while targeting of the HSP70 family chaperones HSPA1A/B most specifically sensitizes cancer cells to the proteasome inhibition. This suggests a central role of HSP70 in the suppression of the proteasome downregulation, allowing to identify pathways impinging on HSP70 upon the proteasome inhibition. HSPA1A/B indeed controls proteasome-inhibition-induced autophagy, unfolded protein response, and endocytic flux, and directly chaperones the proteasome machinery. However, it does not control the NRF1/2-driven proteasome subunit transcriptional bounce-back. Consequently, targeting of NRF1 proves effective in decreasing the viability of cancer cells with the inhibited proteasome and HSP70.


Subject(s)
HSP70 Heat-Shock Proteins , Neoplasms , Proteasome Endopeptidase Complex , Humans , Cell Line, Tumor , HSP70 Heat-Shock Proteins/metabolism , Neoplasms/genetics , NF-E2-Related Factor 1/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Proteostasis
6.
Proteomes ; 10(2)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35466238

ABSTRACT

Visceral leishmaniasis (VL) is a neglected disease caused by Leishmania parasites. Although significant morbidity and mortality in tropical and subtropical regions of the world are associated with VL, the low investment for developing new treatment measures is chronic. Moreover, resistance and treatment failure are increasing for the main medications, but the emergence of resistance phenotypes is poorly understood at the protein level. Here, we analyzed the development of resistance to miltefosine upon experimental selection in a L. infantum strain. Time to miltefosine resistance emergence was ~six months and label-free quantitative mass-spectrometry-based proteomics analyses revealed that this process involves a remodeling of components of the membrane and mitochondrion, with significant increase in oxidative phosphorylation complexes, particularly on complex IV and ATP synthase, accompanied by increased energy metabolism mainly dependent on ß-oxidation of fatty acids. Proteins canonically involved in ROS detoxification did not contribute to the resistant process whereas sterol biosynthesis enzymes could have a role in this development. Furthermore, changes in the abundance of proteins known to be involved in miltefosine resistance such as ABC transporters and phospholipid transport ATPase were detected. Together, our data show a more complete picture of the elements that make up the miltefosine resistance phenotype in L. infantum.

7.
Front Mol Biosci ; 9: 834814, 2022.
Article in English | MEDLINE | ID: mdl-35359604

ABSTRACT

Protein kinase CK2 is a highly pleiotropic and ubiquitously expressed Ser/Thr kinase with instrumental roles in normal and pathological states, including neoplastic phenotype in solid tumor and hematological malignancies. In line with previous reports, CK2 has been suggested as an attractive prognostic marker and molecular target in acute myeloid leukemia (AML), a blood malignant disorder that remains as an unmet medical need. Accordingly, this work investigates the complex landscape of molecular and cellular perturbations supporting the antileukemic effect exerted by CK2 inhibition in AML cells. To identify and functionally characterize the proteomic profile differentially modulated by the CK2 peptide-based inhibitor CIGB-300, we carried out LC-MS/MS and bioinformatic analysis in human cell lines representing two differentiation stages and major AML subtypes. Using this approach, 109 and 129 proteins were identified as significantly modulated in HL-60 and OCI-AML3 cells, respectively. In both proteomic profiles, proteins related to apoptotic cell death, cell cycle progression, and transcriptional/translational processes appeared represented, in agreement with previous results showing the impact of CIGB-300 in AML cell proliferation and viability. Of note, a group of proteins involved in intracellular redox homeostasis was specifically identified in HL-60 cell-regulated proteome, and flow cytometric analysis also confirmed a differential effect of CIGB-300 over reactive oxygen species (ROS) production in AML cells. Thus, oxidative stress might play a relevant role on CIGB-300-induced apoptosis in HL-60 but not in OCI-AML3 cells. Importantly, these findings provide first-hand insights concerning the CIGB-300 antileukemic effect and draw attention to the existence of both common and tailored response patterns triggered by CK2 inhibition in different AML backgrounds, a phenomenon of particular relevance with regard to the pharmacologic blockade of CK2 and personalized medicine.

8.
Clin Transl Gastroenterol ; 13(5): e00486, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35363634

ABSTRACT

INTRODUCTION: Ulcerative colitis (UC) associated with primary sclerosing cholangitis (PSC-UC) is considered a unique inflammatory bowel disease (IBD) entity. PSC diagnosis in an IBD individual entails a significantly higher risk of gastrointestinal cancer; however, biomarkers for identifying patients with UC at risk for PSC are lacking. We, therefore, performed a thorough PSC-UC biomarker study, starting from archived colonic tissue. METHODS: Proteins were extracted out of formalin-fixed paraffin-embedded proximal colon samples from PSC-UC (n = 9), UC (n = 7), and healthy controls (n = 7). Patients with IBD were in clinical and histological remission, and all patients with UC had a history of pancolitis. Samples were processed by the multienzyme digestion FASP and subsequently analyzed by liquid chromatography-tandem mass spectrometry. Candidate proteins were replicated in an independent cohort (n: PSC-UC = 16 and UC = 21) and further validated by immunohistochemistry. RESULTS: In the discovery step, 7,279 unique proteins were detected. The top 5 most differentiating proteins (PSC-UC vs UC) based on linear regression analysis were selected for replication. Of these, 1-acetylglycerol-3-phosphate O-acyltransferase 1 (AGPAT1) was verified as higher in PSC-UC than UC (P = 0.009) in the replication cohort. A difference on the group level was also confirmed by immunohistochemistry, showing more intense AGPAT1 staining in patients with PSC-UC compared with UC. DISCUSSION: We present AGPAT1 as a potential colonic biomarker for differentiating PSC-UC from UC. Our findings have possible implication for future PSC-IBD diagnostics and surveillance.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/analysis , Cholangitis, Sclerosing , Colitis, Ulcerative , Inflammatory Bowel Diseases , Biomarkers/metabolism , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/diagnosis , Cholangitis, Sclerosing/pathology , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/pathology , Humans
9.
J Sep Sci ; 45(10): 1784-1796, 2022 May.
Article in English | MEDLINE | ID: mdl-35306742

ABSTRACT

Sample preparation and protein fractionation are important issues for proteomic studies. Protein extraction procedures strongly affect the performance of fractionation methods by provoking protein dispersion in several fractions. The most notable exception is the gel-based electrophoretic protein fractionation due to its resolution and effectiveness of sodium dodecyl sulfate as a solubilizing agent, while its main limitation lies in the poor recovery of the gel-trapped proteins. We created a fractionator device to separate complex mixture of proteins and peptides that is based on the continuous gel electrophoresis/electroelution sorting of these molecules. In an unsupervised process, complex mixtures of proteins or peptides are fractionated into the gel while separated fractions are simultaneously and sequentially electroeluted to the solution containing wells. The performance of the device was studied for protein fractionation in terms of reproducibility, protein recovery, and loading capacity. In a setup free of sodium dodecyl sulfate, complex peptide mixtures can also be fractionated. More than 11,700 proteins were identified in the whole-cell lysate of the CaSki cell line by using the fractionator combined with the filter-aided sample preparation method and mass spectrometry analysis. Fractionator-based proteome characterization increased 1.7-fold the number of identified proteins compared to the unfractionated sample analysis.


Subject(s)
Peptides , Proteomics , Electrophoresis, Polyacrylamide Gel , Peptides/chemistry , Proteome/analysis , Proteomics/methods , Reproducibility of Results , Sodium Dodecyl Sulfate/chemistry
10.
Antioxidants (Basel) ; 11(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35204161

ABSTRACT

In American Tegumentary Leishmaniasis production of cytokines, reactive oxygen species and nitric oxide (NO) by host macrophages normally lead to parasite death. However, some Leishmania braziliensis strains exhibit natural NO resistance. NO-resistant strains cause more lesions and are frequently more resistant to antimonial treatment than NO-susceptible ones, suggesting that NO-resistant parasites are endowed with specific mechanisms of survival and persistence. To tests this, we analyzed the effect of pro- and antioxidant molecules on the infectivity in vitro of L. braziliensis strains exhibiting polar phenotypes of resistance or susceptibility to NO. In addition, we conducted a comprehensive quantitative mass spectrometry-based proteomics analysis of those parasites. NO-resistant parasites were more infective to peritoneal macrophages, even in the presence of high levels of reactive species. Principal component analysis of protein concentration values clearly differentiated NO-resistant from NO-susceptible parasites, suggesting that there are natural intrinsic differences at molecular level among those strains. Upon NO exposure, NO-resistant parasites rapidly modulated their proteome, increasing their total protein content and glutathione (GSH) metabolism. Furthermore, NO-resistant parasites showed increased glucose analogue uptake, and increased abundance of phosphotransferase and G6PDH after nitrosative challenge, which can contribute to NADPH pool maintenance and fuel the reducing conditions for the recovery of GSH upon NO exposure. Thus, increased glucose consumption and GSH-mediated redox capability may explain the natural resistance of L. braziliensis against NO.

11.
Clin Pharmacol Ther ; 111(5): 1142-1154, 2022 05.
Article in English | MEDLINE | ID: mdl-35158408

ABSTRACT

Mathematical models, such as physiologically-based pharmacokinetic models, are used to predict, for example, drug disposition and toxicity. However, populations differ in the abundance of proteins involved in these processes. To improve the building and refinement of such models, they must take into account these interindividual variabilities. In this study, we used global proteomics to characterize the protein composition of jejunum and liver from 37 donors with obesity enrolled in the COCKTAIL study. Liver protein levels from the 37 donors were further compared with those from donors without obesity. We quantified thousands of proteins and could present the expression of several drug-metabolizing enzymes, for the first time, in jejunum, many of which belong to the cytochrome P450 (CYP) (e.g., CYP2U1) and the amine oxidase (flavin-containing) (e.g., monoamine oxidase A (MAOA)) families. Although we show that many metabolizing enzymes had greater expression in liver, others had higher expression in jejunum (such as, MAOA and CES2), indicating the role of the small intestine in extrahepatic drug metabolism. We further show that proteins involved in drug disposition are not correlated in the two donor-matched tissues. These proteins also do not correlate with physiological factors such as body mass index, age, and inflammation status in either tissue. Furthermore, the majority of these proteins are not differently expressed in donors with or without obesity. Nonetheless, interindividual differences were considerable, with implications for personalized prediction models and systems pharmacology.


Subject(s)
Cytochrome P-450 Enzyme System , Jejunum , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 2/metabolism , Humans , Intestine, Small/metabolism , Jejunum/metabolism , Liver/metabolism , Obesity/metabolism
12.
BMC Med ; 19(1): 196, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34482820

ABSTRACT

BACKGROUND: Renal neoplasms encompass a variety of malignant and benign tumors, including many with shared characteristics. The diagnosis of these renal neoplasms remains challenging with currently available tools. In this work, we demonstrate the total protein approach (TPA) based on high-resolution mass spectrometry (MS) as a tool to improve the accuracy of renal neoplasm diagnosis. METHODS: Frozen tissue biopsies of human renal tissues [clear cell renal cell carcinoma (n = 7), papillary renal cell carcinoma (n = 5), chromophobe renal cell carcinoma (n = 5), and renal oncocytoma (n = 5)] were collected for proteome analysis. Normal adjacent renal tissue (NAT, n = 5) was used as a control. Proteins were extracted and digested using trypsin, and the digested proteomes were analyzed by label-free high-resolution MS (nanoLC-ESI-HR-MS/MS). Quantitative analysis was performed by comparison between protein abundances of tumors and NAT specimens, and the label-free and standard-free TPA was used to obtain absolute protein concentrations. RESULTS: A total of 205 differentially expressed proteins with the potential to distinguish the renal neoplasms were found. Of these proteins, a TPA-based panel of 24, including known and new biomarkers, was selected as the best candidates to differentiate the neoplasms. As proof of concept, the diagnostic potential of PLIN2, TUBB3, LAMP1, and HK1 was validated using semi-quantitative immunohistochemistry with a total of 128 samples assessed on tissue micro-arrays. CONCLUSIONS: We demonstrate the utility of combining high-resolution MS and the TPA as potential new diagnostic tool in the pathology of renal neoplasms. A similar TPA approach may be implemented in any cancer study with solid biopsies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Biomarkers, Tumor , Carcinoma, Renal Cell/diagnosis , Diagnosis, Differential , Humans , Kidney Neoplasms/diagnosis , Proteomics , Tandem Mass Spectrometry
13.
Biomedicines ; 9(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34356831

ABSTRACT

Protein kinase CK2 has emerged as an attractive therapeutic target in acute myeloid leukemia (AML), an advent that becomes particularly relevant since the treatment of this hematological neoplasia remains challenging. Here we explored for the first time the effect of the clinical-grade peptide-based CK2 inhibitor CIGB-300 on AML cells proliferation and viability. CIGB-300 internalization and subcellular distribution were also studied, and the role of B23/nucleophosmin 1 (NPM1), a major target for the peptide in solid tumors, was addressed by knock-down in model cell lines. Finally, pull-down experiments and phosphoproteomic analysis were performed to study CIGB-interacting proteins and identify the array of CK2 substrates differentially modulated after treatment with the peptide. Importantly, CIGB-300 elicited a potent anti-proliferative and proapoptotic effect in AML cells, with more than 80% of peptide transduced cells within three minutes. Unlike solid tumor cells, NPM1 did not appear to be a major target for CIGB-300 in AML cells. However, in vivo pull-down experiments and phosphoproteomic analysis evidenced that CIGB-300 targeted the CK2α catalytic subunit, different ribosomal proteins, and inhibited the phosphorylation of a common CK2 substrates array among both AML backgrounds. Remarkably, our results not only provide cellular and molecular insights unveiling the complexity of the CIGB-300 anti-leukemic effect in AML cells but also reinforce the rationale behind the pharmacologic blockade of protein kinase CK2 for AML-targeted therapy.

14.
Cells ; 10(8)2021 08 08.
Article in English | MEDLINE | ID: mdl-34440794

ABSTRACT

Hypoxia is a common feature in most tumors, including hematological malignancies. There is a lack of studies on hypoxia- and physioxia-induced global proteome changes in lymphoma. Here, we sought to explore how the proteome of diffuse large B-cell lymphoma (DLBCL) changes when cells are exposed to acute hypoxic stress (1% of O2) and physioxia (5% of O2) for a long-time. A total of 8239 proteins were identified by LC-MS/MS, of which 718, 513, and 486 had significant changes, in abundance, in the Ri-1, U2904, and U2932 cell lines, respectively. We observed that changes in B-NHL proteome profiles induced by hypoxia and physioxia were quantitatively similar in each cell line; however, differentially abundant proteins (DAPs) were specific to a certain cell line. A significant downregulation of several ribosome proteins indicated a translational inhibition of new ribosome protein synthesis in hypoxia, what was confirmed in a pathway enrichment analysis. In addition, downregulated proteins highlighted the altered cell cycle, metabolism, and interferon signaling. As expected, the enrichment of upregulated proteins revealed terms related to metabolism, HIF1 signaling, and response to oxidative stress. In accordance to our results, physioxia induced weaker changes in the protein abundance when compared to those induced by hypoxia. Our data provide new evidence for understanding mechanisms by which DLBCL cells respond to a variable oxygen level. Furthermore, this study reveals multiple hypoxia-responsive proteins showing an altered abundance in hypoxic and physioxic DLBCL. It remains to be investigated whether changes in the proteomes of DLBCL under normoxia and physioxia have functional consequences on lymphoma development and progression.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/metabolism , Proteome/metabolism , Proteomics/methods , Signal Transduction , Cell Hypoxia , Cell Line, Tumor , Chromatography, Liquid/methods , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Oxygen/metabolism , Protein Interaction Maps , Tandem Mass Spectrometry/methods
15.
Int J Mol Sci ; 22(14)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34299044

ABSTRACT

We present two separate label-free quantitative workflows based on different high-resolution mass spectrometers and LC setups, which are termed after the utilized instrument: Quad-Orbitrap (nano-LC) and Triple Quad-TOF (micro-LC) and their directed adaptation toward the analysis of human follicular fluid proteome. We identified about 1000 proteins in each distinct workflow using various sample preparation methods. With assistance of the Total Protein Approach, we were able to obtain absolute protein concentrations for each workflow. In a pilot study of twenty samples linked to diverse oocyte quality status from four donors, 455 and 215 proteins were quantified by the Quad-Orbitrap and Triple Quad-TOF workflows, respectively. The concentration values obtained from both workflows correlated to a significant degree. We found reasonable agreement of both workflows in protein fold changes between tested groups, resulting in unified lists of 20 and 22 proteins linked to oocyte maturity and blastocyst development, respectively. The Quad-Orbitrap workflow was best suited for an in-depth analysis without the need of extensive fractionation, especially of low abundant proteome, whereas the Triple Quad-TOF workflow allowed a more robust approach with a greater potential to increase in effectiveness with the growing number of analyzed samples after the initial effort of building a comprehensive spectral library.


Subject(s)
Biomarkers/metabolism , Follicular Fluid/metabolism , Oocytes/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Biomarkers/analysis , Female , Fertilization in Vitro , Follicular Fluid/cytology , Humans , Oocytes/cytology , Pilot Projects , Workflow
16.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201282

ABSTRACT

Aging is associated with a general decline of cognitive functions, and it is widely accepted that this decline results from changes in the expression of proteins involved in regulation of synaptic plasticity. However, several lines of evidence have accumulated that suggest that the impaired function of the aged brain may be related to significant alterations in the energy metabolism. In the current study, we employed the label-free "Total protein approach" (TPA) method to focus on the similarities and differences in energy metabolism proteomes of young (1-month-old) and aged (22-month-old) murine brains. We quantified over 7000 proteins in each of the following three analyzed brain structures: the hippocampus, the cerebral cortex and the cerebellum. To the best of our knowledge, this is the most extensive quantitative proteomic description of energy metabolism pathways during the physiological aging of mice. The analysis demonstrates that aging does not significantly affect the abundance of total proteins in the studied brain structures, however, the levels of proteins constituting energy metabolism pathways differ significantly between young and aged mice.


Subject(s)
Aging/metabolism , Cerebellum/metabolism , Cerebral Cortex/metabolism , Energy Metabolism , Hippocampus/metabolism , Proteome/metabolism , Aging/pathology , Animals , Cerebellum/pathology , Cerebral Cortex/pathology , Female , Hippocampus/pathology , Mice , Mice, Inbred C57BL , Proteome/analysis
17.
Cancers (Basel) ; 13(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562532

ABSTRACT

Follicular lymphoma (FL) represents the major subtype of indolent B-cell non-Hodgkin lymphomas (B-NHLs) and results from the malignant transformation of mature B-cells in lymphoid organs. Although gene expression and genomic studies have identified multiple disease driving gene aberrations, only a few proteomic studies focused on the protein level. The present work aimed to examine the proteomic profiles of follicular lymphoma vs. normal B-cells obtained by fine-needle aspiration biopsy (FNAB) to gain deep insight into the most perturbed pathway of FL. The cells of interest were purified by magnetic-activated cell sorting (MACS). High-throughput proteomic profiling was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and allowed to identify of 6724 proteins in at least 75% of each group of samples. The 'Total Protein Approach' (TPA) was applied to the absolute quantification of proteins in this study. We identified 1186 differentially abundant proteins (DAPs) between FL and control samples, causing an extensive remodeling of several molecular pathways, including the B-cell receptor signaling pathway, cellular adhesion molecules, and PPAR pathway. Additionally, the construction of protein-protein interactions networks (PPINs) and identification of hub proteins allowed us to indicate the key player proteins for FL pathology. Finally, ICAM1, CD9, and CD79B protein expression was validated in an independent cohort by flow cytometry (FCM), and the results were consistent with the mass spectrometry (MS) data.

18.
Cells ; 10(2)2021 02 05.
Article in English | MEDLINE | ID: mdl-33562780

ABSTRACT

Casein kinase 2 (CK2) regulates a plethora of proteins with pivotal roles in solid and hematological neoplasia. Particularly, in acute myeloid leukemia (AML) CK2 has been pointed as an attractive therapeutic target and prognostic marker. Here, we explored the impact of CK2 inhibition over the phosphoproteome of two cell lines representing major AML subtypes. Quantitative phosphoproteomic analysis was conducted to evaluate changes in phosphorylation levels after incubation with the ATP-competitive CK2 inhibitor CX-4945. Functional enrichment, network analysis, and database mining were performed to identify biological processes, signaling pathways, and CK2 substrates that are responsive to CX-4945. A total of 273 and 1310 phosphopeptides were found differentially modulated in HL-60 and OCI-AML3 cells, respectively. Despite regulated phosphopeptides belong to proteins involved in multiple biological processes and signaling pathways, most of these perturbations can be explain by direct CK2 inhibition rather than off-target effects. Furthermore, CK2 substrates regulated by CX-4945 are mainly related to mRNA processing, translation, DNA repair, and cell cycle. Overall, we evidenced that CK2 inhibitor CX-4945 impinge on mediators of signaling pathways and biological processes essential for primary AML cells survival and chemosensitivity, reinforcing the rationale behind the pharmacologic blockade of protein kinase CK2 for AML targeted therapy.


Subject(s)
Casein Kinase II/therapeutic use , Leukemia, Myeloid, Acute/genetics , Naphthyridines/therapeutic use , Phenazines/therapeutic use , Casein Kinase II/pharmacology , Humans , Leukemia, Myeloid, Acute/pathology , Naphthyridines/pharmacology , Phenazines/pharmacology
19.
Thromb Res ; 198: 93-98, 2021 02.
Article in English | MEDLINE | ID: mdl-33307284

ABSTRACT

Acetylsalicylic acid (ASA) and type 2 diabetes mellitus (T2DM) affect fibrin clot properties through fibrinogen acetylation or glycation. We aimed to identify glycation and acetylation sites on fibrinogen in plasma fibrin clot of T2DM patients with respect to effects of ASA and fibrin clot properties. In fibrin clots generated from plasma of 9 T2DM patients, we performed mass-spectrometric analysis of Nε-fructosyl-(FL), Nε-carboxyethyl-(CEL) and Nε-carboxymethyl-lysine (CML), and acetylation sites, before and after one-month administration of 75 mg/d ASA confirmed with determination of thromboxane B2 concentration (TXB2), along with clot permeability and lysis time, and thrombin generation. In the proteomic analysis, 216 proteins were identified. Among 10 glycation sites identified in α, 10 in ß and 6 in γ fibrinogen chain, there were 17 FL, 5 CEL and 4 CML sites. Some of glycation sites in fibrinogen were previously reported to be involved in cross-linking by factor XIII (αK-208, αK-448 and αK-539) and plasmin cleavage (αK-81). There were 7 acetylation sites in α and ß chains, and none in fibrinogen γ chain. Two acetylation sites were identical with FL sites (αK-195 and ß-247), while one with CML site (ßK-353). In 7 patients with low post-ASA TXB2, intensity of acetylation, as well as clot properties were unaffected by ASA. This study identifies glycation and acetylation sites on fibrinogen in plasma fibrin clot of T2DM and supports the view that low-dose ASA does not increase fibrinogen acetylation in T2DM. Our findings suggest that glycation may block sites previously identified to be acetylated in vitro.


Subject(s)
Diabetes Mellitus, Type 2 , Fibrin , Acetylation , Aspirin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Fibrin/metabolism , Fibrinogen/metabolism , Fibrinolysis , Humans , Proteomics
20.
Clin Pharmacol Ther ; 109(3): 762-771, 2021 03.
Article in English | MEDLINE | ID: mdl-32970864

ABSTRACT

Rosuvastatin is a frequently used probe to study transporter-mediated hepatic uptake. Pharmacokinetic models have therefore been developed to predict transporter impact on rosuvastatin disposition in vivo. However, the interindividual differences in transporter concentrations were not considered in these models, and the predicted transporter impact was compared with historical in vivo data. In this study, we investigated the influence of interindividual transporter concentrations on the hepatic uptake clearance of rosuvastatin in 54 patients covering a wide range of body weight. The 54 patients were given an oral dose of rosuvastatin the day before undergoing gastric bypass or cholecystectomy, and pharmacokinetic (PK) parameters were established from each patient's individual time-concentration profiles. Liver biopsies were sampled from each patient and their individual hepatic transporter concentrations were quantified. We combined the transporter concentrations with in vitro uptake kinetics determined in HEK293-transfected cells, and developed a semimechanistic model with a bottom-up approach to predict the plasma concentration profiles of the single dose of rosuvastatin in each patient. The predicted PK parameters were evaluated against the measured in vivo plasma PKs from the same 54 patients. The developed model predicted the rosuvastatin PKs within two-fold error for rosuvastatin area under the plasma concentration versus time curve (AUC; 78% of the patients; average fold error (AFE): 0.96), peak plasma concentration (Cmax ; 76%; AFE: 1.05), and terminal half-life (t1/2 ; 98%; AFE: 0.89), and captured differences in the rosuvastatin PKs in patients with the OATP1B1 521T

Subject(s)
Body Weight , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Liver-Specific Organic Anion Transporter 1/metabolism , Liver/metabolism , Proteomics , Rosuvastatin Calcium/blood , Administration, Oral , Adult , Female , HEK293 Cells , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Liver-Specific Organic Anion Transporter 1/genetics , Male , Middle Aged , Models, Biological , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Rosuvastatin Calcium/administration & dosage , Rosuvastatin Calcium/pharmacokinetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...