Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 283(14): 8913-8, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18198182

ABSTRACT

Disrupting the interaction between glycogen phosphorylase and the glycogen targeting subunit (G(L)) of protein phosphatase 1 is emerging as a novel target for the treatment of type 2 diabetes. To elucidate the molecular basis of binding, we have determined the crystal structure of liver phosphorylase bound to a G(L)-derived peptide. The structure reveals the C terminus of G(L) binding in a hydrophobically collapsed conformation to the allosteric regulator-binding site at the phosphorylase dimer interface. G(L) mimics interactions that are otherwise employed by the activator AMP. Functional studies show that G(L) binds tighter than AMP and confirm that the C-terminal Tyr-Tyr motif is the major determinant for G(L) binding potency. Our study validates the G(L)-phosphorylase interface as a novel target for small molecule interaction.


Subject(s)
Glycogen Phosphorylase, Liver Form/chemistry , Peptides/chemistry , Protein Phosphatase 1/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Amino Acid Motifs/physiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Dimerization , Glycogen Phosphorylase, Liver Form/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Peptides/metabolism , Protein Binding/physiology , Protein Phosphatase 1/metabolism , Protein Structure, Quaternary/physiology , Protein Subunits/chemistry , Protein Subunits/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...