Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Physiol ; 99(6): 894-908, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24706192

ABSTRACT

Recent in vitro and in vivo experimental observations suggest that improvements in insulin sensitivity following endurance training are mechanistically linked to increases in muscle oxidative capacity, intramuscular triglyceride (IMTG) utilization during endurance exercise and increases in the content of the lipid droplet-associated perilipin 2 (PLIN2) and perilipin 5 (PLIN5). This study investigated the hypothesis that similar adaptations may also underlie the resistance training (RT)-induced improvements in insulin sensitivity. Thirteen sedentary men (20 ± 1 years old; body mass index 24.8 ± 0.8 kg m(-2)) performed 6 weeks of whole-body RT (three times per week), and changes in peak O2 uptake (in millilitres per minute per kilogram) and insulin sensitivity were assessed. Muscle biopsies (n = 8) were obtained before and after 60 min steady-state cycling at ~65% peak O2 uptake. Immunofluorescence microscopy was used to assess changes in oxidative capacity (measured as cytochrome c oxidase protein content), IMTG and PLIN2 and PLIN5 protein content. Resistance training increased peak O2 uptake (by 8 ± 3%), COX protein content (by 46 ± 13 and 61 ± 13% in type I and II fibres, respectively) and the Matsuda insulin sensitivity index (by 47 ± 6%; all P < 0.05). In type I fibres, IMTG (by 52 ± 11%; P < 0.05) and PLIN2 content (by 107 ± 19%; P < 0.05) were increased and PLIN5 content tended to increase (by 54 ± 22%; P = 0.054) post-training. In type II fibres, PLIN2 content increased (by 57 ± 20%; P < 0.05) and IMTG (by 46 ± 17%; P = 0.1) and PLIN5 content (by 44 ± 24%; P = 0.054) tended to increase post-training. Breakdown of IMTG during moderate-intensity exercise was greater in both type I and type II fibres (by 43 ± 5 and 37 ± 5%, respectively; P < 0.05) post-RT. The results confirm the hypothesis that RT enhances muscle oxidative capacity and increases IMTG breakdown and the content of PLIN2 and PLIN5 in both type I and type II fibres during endurance-type exercise.


Subject(s)
Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Resistance Training/methods , Sedentary Behavior , Triglycerides/metabolism , Humans , Male , Oxygen Consumption/physiology , Physical Endurance/physiology , Young Adult
2.
Eur J Clin Nutr ; 62(5): 608-16, 2008 May.
Article in English | MEDLINE | ID: mdl-17440522

ABSTRACT

OBJECTIVE: To investigate whether the 'overnight second-meal effect' results in altered substrate oxidation during the postprandial period following breakfast and subsequent sub-maximal exercise in women. SUBJECTS/METHODS: Seven recreationally active women were recruited for the study. In each trial, participants were provided with their evening meal on day 1, which was composed of either high glycaemic index (HGI) or low glycaemic index (LGI) carbohydrates (CHO). On day 2, participants were provided with a standard HGI breakfast and then performed a 60 min run at 65% \[V.]O(2 max) 3 h later. RESULTS: The incremental area under the curve (IAUC) for plasma glucose concentrations during the postprandial period following breakfast was greater in the HGI trial compared to the LGI trial (P<0.01). Similarly, the IAUC for serum insulin concentrations was greater in the HGI trial than the LGI trial (P<0.05). No differences in plasma free-fatty acids (FFA) or plasma glycerol concentrations were found between trials during the postprandial period. During subsequent exercise, there were no significant differences in substrate metabolism. CONCLUSION: The glycaemic index of an evening meal does not alter substrate oxidation at rest following breakfast or during subsequent submaximal exercise in women. This study provides further evidence for the overnight second-meal effect on glycaemic responses following a LGI mixed evening meal.


Subject(s)
Blood Glucose/metabolism , Dietary Carbohydrates/metabolism , Exercise/physiology , Glycemic Index , Insulin/blood , Adult , Analysis of Variance , Area Under Curve , Blood Glucose/analysis , Blood Glucose/drug effects , Cross-Over Studies , Dietary Carbohydrates/pharmacokinetics , Dietary Fats/metabolism , Fatty Acids, Nonesterified/blood , Female , Glycerol/blood , Humans , Lactates/blood , Oxidation-Reduction , Oxygen Consumption , Postprandial Period/physiology
SELECTION OF CITATIONS
SEARCH DETAIL