Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2601, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147298

ABSTRACT

Activating point mutations in Anaplastic Lymphoma Kinase (ALK) have positioned ALK as the only mutated oncogene tractable for targeted therapy in neuroblastoma. Cells with these mutations respond to lorlatinib in pre-clinical studies, providing the rationale for a first-in-child Phase 1 trial (NCT03107988) in patients with ALK-driven neuroblastoma. To track evolutionary dynamics and heterogeneity of tumors, and to detect early emergence of lorlatinib resistance, we collected serial circulating tumor DNA samples from patients enrolled on this trial. Here we report the discovery of off-target resistance mutations in 11 patients (27%), predominantly in the RAS-MAPK pathway. We also identify newly acquired secondary compound ALK mutations in 6 (15%) patients, all acquired at disease progression. Functional cellular and biochemical assays and computational studies elucidate lorlatinib resistance mechanisms. Our results establish the clinical utility of serial circulating tumor DNA sampling to track response and progression and to discover acquired resistance mechanisms that can be leveraged to develop therapeutic strategies to overcome lorlatinib resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Neuroblastoma , Humans , Aminopyridines/therapeutic use , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/genetics , Drug Resistance, Neoplasm/genetics , Lactams, Macrocyclic/therapeutic use , Lung Neoplasms/genetics , Mutation , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Protein Kinase Inhibitors/therapeutic use
2.
Am J Cancer Res ; 10(3): 856-869, 2020.
Article in English | MEDLINE | ID: mdl-32266095

ABSTRACT

Neurofibromatosis type 1 (NF1) and Neurofibromatosis type 2 (NF2) are two dominantly inherited disorders that cause tumors in Schwann cells. NF1 patients have a high risk for malignant peripheral nerve sheath tumors (MPNST), which are often inoperable and do not respond well to current chemotherapies or radiation. NF2 patients have a high risk for schwannomas. To identify potential therapeutic targets in these two tumors, we screened the NF1 MPNST cell line, ST88-14, and the NF2 schwannoma cell line, HEI-193, against ~2000 drugs of known mechanisms of action (including ~600 cancer relevant drugs), and also screened the cell lines against an siRNA library targeting most protein kinases. Both the drug screen and the siRNA screen identified Polo-like kinase 1 (PLK1) among the most potent hits in both cell lines. Since PLK1 acts on the cell cycle primarily at the G2/M transition, the same stage where aurora kinase (AURKA) acts, we explored PLK1 and its relationship to aurora kinase in MPNST. Quantitative profiling of PLK1 inhibitors against a panel of 10 neurofibromatosis cell lines found that they were potent inhibitors and, unlike AURKA inhibitors, were not more selective for NF1 over NF2 tumor cells. Furthermore, one PLK1 inhibitor, BI6727 stabilized tumor volume in MPNST xenografts. We conclude that PLK1 is a therapeutic target for MPNSTs and schwannomas, but inhibitors may have a narrow therapeutic index that limits their use as a single agent.

3.
Am J Cancer Res ; 7(4): 923-934, 2017.
Article in English | MEDLINE | ID: mdl-28469964

ABSTRACT

Patients with Neurofibromatosis type 1 (NF1) and Neurofibromatosis type 2 (NF2) are predisposed to tumors of the nervous system. NF1 patients predominantly develop neurofibromas, and Malignant Peripheral Nerve Sheath Tumors (MPNST) while NF2 patients develop schwannomas and meningiomas. Here we quantified the drug sensitivities of NF1 and NF2 tumor cell lines in a high throughput platform. The platform contained a comprehensive collection of inhibitors of MEK, RAF, RAS, farnesyl transferase, PAK and ERK, representative drugs against many other cancer pathways including Wnt, Hedgehog, p53, EGF, HDAC, as well as classical cytotoxic agents recommended for treating MPNST, such as doxorubicin and etoposide. We profiled seven NF1-associated MPNST cell lines (ST88-14, ST88-3, 90-8, sNF02.2, T265, S462TY, SNF96.2), one sporadic MPNST cell line (STS26), one schwannoma from a NF2 patient (HEI193), one NF2-deficient malignant meningioma (KT21-MG-Luc5D), one mouse NF2 schwannoma (SC4) and one sporadic rat schwannoma (RT4-67 or RT4). NF1 cells were primarily distinguished from NF2 cells and the sporadic MPNST cell line by their sensitivity to MEK and ERK inhibitors, and to a smaller extent their sensitivity to BH3 mimetics and farnesyl transferase inhibitors. The platform was highly successful in predicting the effects of clinical trials for Neurofibromas.

SELECTION OF CITATIONS
SEARCH DETAIL
...