Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrJ ; 5(Pt 3): 335-347, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29755749

ABSTRACT

The structural origin of absorption and fluorescence anisotropy of the single crystal of the π-conjugated heterocyclic system 5,6,10b-tri-aza-acephenan-thrylene, TAAP, is presented in this study. X-ray analysis shows that the crystal framework in the space group P [Formula: see text] is formed by centrosymmetric dimers of face-to-face mutually oriented TAAP molecules joined by π-π non-covalent interactions. The conformation of the TAAP molecule is stabilized by intramolecular C-H⋯N(sp2), N(sp2)H⋯π(CN), and C-H⋯O(sp2) hydrogen bonds. The presence of weak π-π interactions is confirmed by quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) analysis. The analysis of the optical spectra of TAAP in solution and in the solid state does not allow the specification of the aggregation type. DFT calculations for the dimer in the gas phase indicate that the lowest singlet excitation is forbidden by symmetry, suggesting H-type aggregation, even though the overall absorption spectrum is bathochromically shifted as for the J-type. The experimental determination of the permanent dipole moment of a TAAP molecule in 1,4-dioxane solution indicates the presence of the monomer form. The calculated absorption and emission spectra of the crystal in a simple approximation are consistent with the experimentally determined orientation of the absorption and emission transition dipole moments in TAAP single crystals. The electrostatic interaction between monomers with a permanent dipole moment (ca 4 D each) could result in the unusual spectroscopic JH-aggregate behaviour of the TAAP dimer.

2.
J Phys Chem B ; 120(16): 3854-62, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27045959

ABSTRACT

In this study, the proton dynamics of hydrogen bonds for two forms of crystalline aspirin was investigated by the Born-Oppenheimer molecular dynamics (BOMD) method. Analysis of the geometrical parameters of hydrogen bonds using BOMD reveals significant differences in hydrogen bonding between the two crystalline forms of aspirin, Form I and Form II. Analysis of the trajectory for Form I shows spontaneous proton transfer in cyclic dimers, which is absent in Form II. Quantization of the O-H stretching modes allows a detailed discussion on the strength of hydrogen-bonding interactions. The focal point of our study is examination of the hydrogen bond characteristics in the crystal structure and clarification of the influence of hydrogen bonding on the presence of the two crystalline forms of aspirin. In the BOMD method, thermal motions were taken into account. Solving the Schrödinger equation for the snapshots of 2D proton potentials, extracted from MD, gives the best agreement with IR spectra. The character of medium-strong hydrogen bonds in Form I of aspirin was compared with that of weaker hydrogen bonds in aspirin Form II. Two proton minima are present in the potential function for the hydrogen bonds in Form I. The band contours, calculated by using one- and two-dimensional O-H quantization, reflect the differences in the hydrogen bond strengths between the two crystalline forms of aspirin, as well as the strong hydrogen bonding in the cyclic dimers of Form I and the medium-strong hydrogen bonding in Form II.


Subject(s)
Aspirin/chemistry , Molecular Dynamics Simulation , Protons , Crystallography, X-Ray , Hydrogen Bonding
SELECTION OF CITATIONS
SEARCH DETAIL
...