Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Genet ; 16: 10, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25927202

ABSTRACT

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in TSC1 and TSC2. Conventional DNA diagnostic screens identify a TSC1 or TSC2 mutation in 75 - 90% of individuals categorised with definite TSC. The remaining individuals either have a mutation that is undetectable using conventional methods, or possibly a mutation in another as yet unidentified gene. METHODS: Here we apply a targeted Next Generation Sequencing (NGS) approach to screen the complete TSC1 and TSC2 genomic loci in 7 individuals fulfilling the clinical diagnostic criteria for definite TSC in whom no TSC1 or TSC2 mutations were identified using conventional screening methods. RESULTS: We identified and confirmed pathogenic mutations in 3 individuals. In the remaining individuals we identified variants of uncertain clinical significance. The identified variants included mosaic changes, changes located deep in intronic sequences and changes affecting promoter regions that would not have been identified using exon-only based analyses. CONCLUSIONS: Targeted NGS of the TSC1 and TSC2 loci is a suitable method to increase the yield of mutations identified in the TSC patient population.


Subject(s)
DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Mutation , Tumor Suppressor Proteins/genetics , Adolescent , Child , Genetic Loci/genetics , Genomics , Humans , Middle Aged , Tuberous Sclerosis/genetics , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein
2.
Eur J Hum Genet ; 19(2): 157-63, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20877415

ABSTRACT

Tuberous sclerosis complex (TSC), an autosomal dominant disorder, is a multisystem disease with manifestations in the central nervous system, kidneys, skin and/or heart. Most TSC patients carry a pathogenic mutation in either TSC1 or TSC2. All types of mutations, including large rearrangements, nonsense, missense and frameshift mutations, have been identified in both genes, although large rearrangements in TSC1 are scarce. In this study, we describe the identification and characterisation of eight large rearrangements in TSC1 using multiplex ligation-dependent probe amplification (MLPA) in a cohort of 327 patients, in whom no pathogenic mutation was identified after sequence analysis of both TSC1 and TSC2 and MLPA analysis of TSC2. In four families, deletions only affecting the non-coding exon 1 were identified. In one case, loss of TSC1 mRNA expression from the affected allele indicated that exon 1 deletions are inactivating mutations. Although the number of TSC patients with large rearrangements of TSC1 is small, these patients tend to have a somewhat milder phenotype compared with the group of patients with small TSC1 mutations.


Subject(s)
Promoter Regions, Genetic , Sequence Deletion , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tumor Suppressor Proteins/genetics , DNA Mutational Analysis , Humans , Nucleic Acid Amplification Techniques/methods , Phenotype , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis Complex 1 Protein
3.
Genet Test Mol Biomarkers ; 13(3): 399-406, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19405878

ABSTRACT

Women carrying a pathogenic mutation in either BRCA1 or BRCA2 have a major risk of developing breast and/or ovarian cancer. The majority of mutations in these genes are small point mutations. Since the development of multiplex ligation-dependent probe amplification, an increasing number of large genomic rearrangements have been detected. Here, we describe the characterization of pathogenic deletions of exons 1a-2 of BRCA1 in six families using loss of heterozygosity, array comparative genomic hybridization, and sequence analyses. Two families harbor a 37 kb deletion starting in intron 2 of psi BRCA1, encompassing NBR2, and exons 1a-2 of BRCA1, while the other four families have an 8 kb deletion with breakpoints in intron 2 of NBR2 and intron 2 of BRCA1. This observation, together with the previously described families with exon 1a-2 deletions of BRCA1, demonstrates that this type of deletions is relatively frequent in breast/ovarian cancer families.


Subject(s)
Exons , Genes, BRCA1 , Sequence Deletion , Adult , Breast Neoplasms/genetics , Cohort Studies , DNA, Neoplasm/genetics , DNA, Neoplasm/isolation & purification , Family , Female , Genetic Markers , Haplotypes , Humans , Introns , Loss of Heterozygosity , Middle Aged , Nucleic Acid Amplification Techniques , Nucleic Acid Hybridization , Ovarian Neoplasms/genetics , Pedigree , Point Mutation , Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...