Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 6(8): e22974, 2011.
Article in English | MEDLINE | ID: mdl-21876734

ABSTRACT

Pectobacterium species are necrotrophic bacterial pathogens that cause soft rot diseases in potatoes and several other crops worldwide. Gene expression data identified Pectobacterium carotovorum subsp. carotovorum budB, which encodes the α-acetolactate synthase enzyme in the 2,3-butanediol pathway, as more highly expressed in potato tubers than potato stems. This pathway is of interest because volatiles produced by the 2,3-butanediol pathway have been shown to act as plant growth promoting molecules, insect attractants, and, in other bacterial species, affect virulence and fitness. Disruption of the 2,3-butanediol pathway reduced virulence of P. c. subsp. carotovorum WPP14 on potato tubers and impaired alkalinization of growth medium and potato tubers under anaerobic conditions. Alkalinization of the milieu via this pathway may aid in plant cell maceration since Pectobacterium pectate lyases are most active at alkaline pH.


Subject(s)
Acetoin/metabolism , Biosynthetic Pathways , Pectobacterium carotovorum/metabolism , Pectobacterium carotovorum/pathogenicity , Acetoin/pharmacology , Alkalies , Biosynthetic Pathways/drug effects , Butylene Glycols/pharmacology , Culture Media/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial/genetics , Hydrogen-Ion Concentration/drug effects , Mutation/genetics , Operon/genetics , Pectobacterium carotovorum/genetics , Pectobacterium carotovorum/growth & development , Plant Stems/drug effects , Plant Stems/microbiology , Plant Tubers/drug effects , Plant Tubers/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solanum tuberosum/drug effects , Solanum tuberosum/microbiology , Tissue Culture Techniques , Virulence/drug effects
2.
Virology ; 347(1): 160-74, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16380146

ABSTRACT

Symbionts often exhibit significant reductions in genome complexity while pathogens often exhibit increased complexity through acquisition and diversification of virulence determinants. A few organisms have evolved complex life cycles in which they interact as symbionts with one host and pathogens with another. How the predicted and opposing influences of symbiosis and pathogenesis affect genome evolution in such instances, however, is unclear. The Polydnaviridae is a family of double-stranded (ds) DNA viruses associated with parasitoid wasps that parasitize other insects. Polydnaviruses (PDVs) only replicate in wasps but infect and cause severe disease in parasitized hosts. This disease is essential for survival of the parasitoid's offspring. Thus, a true mutualism exists between PDVs and wasps as viral transmission depends on parasitoid survival and parasitoid survival depends on viral infection of the wasp's host. To investigate how life cycle and ancestry affect PDVs, we compared the genomes of Campoletis sonorensis ichnovirus (CsIV) and Microplitis demolitor bracovirus (MdBV). CsIV and MdBV have no direct common ancestor, yet their encapsidated genomes share several features including segmentation, diversification of virulence genes into families, and the absence of genes required for replication. In contrast, CsIV and MdBV share few genes expressed in parasitized hosts. We conclude that the similar organizational features of PDV genomes reflect their shared life cycle but that PDVs associated with ichneumonid and braconid wasps have likely evolved different strategies to cause disease in the wasp's host and promote parasitoid survival.


Subject(s)
Genome, Viral , Polydnaviridae/genetics , Polydnaviridae/pathogenicity , Animals , DNA, Viral/genetics , Lepidoptera/parasitology , Molecular Sequence Data , Phylogeny , Polydnaviridae/classification , Polydnaviridae/physiology , Repetitive Sequences, Nucleic Acid , Species Specificity , Symbiosis/genetics , Virulence/genetics , Virus Replication/genetics , Wasps/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...