Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 146(12): 5168-5181, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37527460

ABSTRACT

Interictal epileptiform discharges have been shown to propagate from focal epileptogenic sources as travelling waves or through more rapid white matter conduction. We hypothesize that both modes of propagation are necessary to explain interictal discharge timing delays. We propose a method that, for the first time, incorporates both propagation modes to identify unique potential sources of interictal activity. We retrospectively analysed 38 focal epilepsy patients who underwent intracranial EEG recordings and diffusion-weighted imaging for epilepsy surgery evaluation. Interictal discharges were detected and localized to the most likely source based on relative delays in time of arrival across electrodes, incorporating travelling waves and white matter propagation. We assessed the influence of white matter propagation on distance of spread, timing and clinical interpretation of interictal activity. To evaluate accuracy, we compared our source localization results to earliest spiking regions to predict seizure outcomes. White matter propagation helps to explain the timing delays observed in interictal discharge sequences, underlying rapid and distant propagation. Sources identified based on differences in time of receipt of interictal discharges are often distinct from the leading electrode location. Receipt of activity propagating rapidly via white matter can occur earlier than more local activity propagating via slower cortical travelling waves. In our cohort, our source localization approach was more accurate in predicting seizure outcomes than the leading electrode location. Inclusion of white matter in addition to travelling wave propagation in our model of discharge spread did not improve overall accuracy but allowed for identification of unique and at times distant potential sources of activity, particularly in patients with persistent postoperative seizures. Since distant white matter propagation can occur more rapidly than local travelling wave propagation, combined modes of propagation within an interictal discharge sequence can decouple the commonly assumed relationship between spike timing and distance from the source. Our findings thus highlight the clinical importance of recognizing the presence of dual modes of propagation during interictal discharges, as this may be a cause of clinical mislocalization.


Subject(s)
Epilepsies, Partial , White Matter , Humans , Retrospective Studies , Epilepsies, Partial/surgery , Seizures/surgery , Electrocorticography , Electroencephalography/methods
2.
Brain ; 146(5): 1903-1915, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36729683

ABSTRACT

While seizure activity may be electrographically widespread, increasing evidence has suggested that ictal discharges may in fact represent travelling waves propagated from a focal seizure source. Interictal epileptiform discharges (IEDs) are an electrographic manifestation of excessive hypersynchronization of cortical activity that occur between seizures and are considered a marker of potentially epileptogenic tissue. The precise relationship between brain regions demonstrating IEDs and those involved in seizure onset, however, remains poorly understood. Here, we hypothesize that IEDs likewise reflect the receipt of travelling waves propagated from the same regions which give rise to seizures. Forty patients from our institution who underwent invasive monitoring for epilepsy, proceeded to surgery and had at least one year of follow-up were included in our study. Interictal epileptiform discharges were detected using custom software, validated by a clinical epileptologist. We show that IEDs reach electrodes in sequences with a consistent temporal ordering, and this ordering matches the timing of receipt of ictal discharges, suggesting that both types of discharges spread as travelling waves. We use a novel approach for localization of ictal discharges, in which time differences of discharge receipt at nearby electrodes are used to compute source location; similar algorithms have been used in acoustics and geophysics. We find that interictal discharges co-localize with ictal discharges. Moreover, interictal discharges tend to localize to the resection territory in patients with good surgical outcome and outside of the resection territory in patients with poor outcome. The seizure source may originate at, and also travel to, spatially distinct IED foci. Our data provide evidence that interictal discharges may represent travelling waves of pathological activity that are similar to their ictal counterparts, and that both ictal and interictal discharges emerge from common epileptogenic brain regions. Our findings have important clinical implications, as they suggest that seizure source localizations may be derived from interictal discharges, which are much more frequent than seizures.


Subject(s)
Electroencephalography , Epilepsy , Humans , Brain , Seizures , Epilepsy/surgery , Brain Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...